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DEBUSSY is a new free open-source package, written in Fortran95 and devoted
to the application of the Debye function analysis (DFA) of powder diffraction
data from nanocrystalline, defective and/or non-periodic materials through the
use of sampled interatomic distance databases. The suite includes a main
program, taking the name of the package,DEBUSSY, and dealing with the DFA
of X-ray, neutron and electron experimental data, and a suite of 11 programs,
named CLAUDE, enabling users to create their own databases for nanosized
crystalline materials, starting from the list of space-group generators and the
asymmetric unit content. A new implementation of the Debye formula is
adopted in DEBUSSY, which makes the approach fast enough to deal with the
pattern calculation of hundreds of nanocrystals, to sum up their contributions to
the total pattern and to perform iterative algorithms for optimizing the
parameters of the pattern model. The package strategy uses the sampled-
distance database(s) created previously by CLAUDE and combines, for any
phase, a log-normal or a bivariate log-normal function to deal with the sample-
size distribution; four different functions are implemented to manage possible
lattice expansions/contractions as a function of crystal size. A number of output
ASCII files are produced to supply some statistics and data suitable for graphical
use. The databases of sampled interatomic non-dimensional distances for
cuboctahedral, decahedral and icosahedral structure types, suitable for dealing
with noble metal nanoparticles, are also available.

1. Introduction

The Debye function (DF) (Debye, 1915; Cervellino et al., 2003), like
the more popular pair distribution function (PDF) (Debye & Menke,
1930; Egami & Billinge, 2003; Juhás et al., 2006), is a total scattering
approach which is nowadays acknowledged to be more effective than
standard Rietveld-like methods (Rietveld, 1969; Cheary & Coelho,
1992) for extracting relevant (micro)structural details of nano-
crystalline systems from their powder diffraction data (Hall, 2000;
Hall et al., 2000; Kaszkur, 2000; Palosz et al., 2000; Cervellino et al.,
2004; Cozzoli et al., 2006; Guagliardi et al., 2010). The short length
scale of the domains, sometimes coupled with structural defects and/
or distortions caused by surface effects, results in some peculiar
features in the diffraction pattern (Warren, 1990; Neder & Proffen,
2008; Neder, 2010). Conventional powder diffraction approaches,
mainly developed for microcrystalline specimens and relying strongly
on instrumental broadening as the dominant contribution to the
experimental pattern, can fail in modelling such sample effects or at
best reach this goal through a phenomenological model which allows
the indirect estimation of physical parameters. For both isotropically
and anisotropically shaped nanoparticles with very small coherent
domains and/or a high defect concentration, the instrumental
broadening usually becomes negligible with respect to the finite size,
shape and structure-based sample contributions. Furthermore,
domains in real samples are likely distributed in size or shape along
one (the isotropic shape case), two or even three growth directions.

These sample features can be described through a physically based
model within the Debye function approach as it works in direct space.
In addition, unlike the PDF, the DF does not transform the experi-
mental data, thus keeping the advantage of simultaneously dealing
with both reciprocal and direct spaces. In reciprocal space, the
experimental data can (in principle) be almost exactly reproduced by
the formula, provided that extra-sample contributions to the back-
ground, such as air and sample-holder scattering, are properly
accounted for and as long as a number of requirements are achieved
in direct space. These are (within the averaged-volume approxima-
tion of the powder diffraction technique) as follows: (a) a reliable
structural model (ordered, disordered or defective); (b) a suitable
model for the shape and size of nanocrystals (NCs) and their possible
distributions, according to a physically and chemically sound
description.

The main advantage of using the Debye formula when investi-
gating short-range ordered materials such as nanocrystalline
compounds is the ability to model simultaneously both Bragg (if any)
and diffuse sample scattering, all arising from the distribution of the
interatomic distances within the sample and not requiring periodicity
and order.

Considering the general case of a particle containing Na atomic
species and Ns atoms of the sth species (s = 1 . . . Na), each atom of
the same species is identified by a mean position vector rsj ( j =
1 . . . Ns), a mean occupancy os, a scattering length bs and an isotropic
Debye–Waller thermal factor Ts. The diffracted intensity is obtained



by spherically averaging over all possible orientations of the particle
[or of the scattering vector q = |q| = 2sin(!)/", where 2! is the
diffraction angle and " the wavelength of the incident radiation],
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where sinc(x) = sin(x)/x. The equation has been split into three terms
to highlight the contributions of the zero distances between an atom
and itself (term 1) and of the nonzero interatomic distances djk,ss = |rsj
% rsk|, here separated in pairs of equal (term 2) and nonequal (term 3)
species.
Although the relevance of this formula has been clear since it was

presented in 1915, the Debye function approach has suffered from
low popularity over the years because of the unfeasible computa-
tional times that are intrinsic to its formulation (the number of
interatomic distances increases with the square of the NC size for
ordered materials, and with up to its sixth power for disordered ones).
This aspect has remained an unsolved drawback for the application of
Debye function analysis (DFA) to real cases until recently, so that,
despite the progress in computing resources over recent decades, its
use has been limited mostly to the calculation of single simulations
(Neder & Proffen, 2008; Oddershede et al., 2008), discouraging the
development of dedicated software programs. A very up-to-date and
promising way of dealing with the computing problems of the DF
seems to rely on the use of graphics processing units (Gelisio et al.,
2010). Based on a different and original approach, many tricks have
been suggested recently in order to turn the DF method into an
efficient and viable structural and microstructural data analysis tool.
These tricks are now systematically organized and implemented in
the suite of programs presented here. Among them, besides grouping
the same distances in a single term and evaluating its multiplicity, we
cite the following: (i) exploiting the crystal symmetry in order to
reduce the number of interatomic distances (Grover & McKenzie,
2001; Cervellino & Guagliardi, 2010; Thomas, 2010); (ii) sampling the
NC interatomic distances (Hall & Monot, 1991; Cervellino et al.,
2006), so that the number of terms in the DF is reduced by orders of
magnitude without losing accuracy in the pattern calculation; (iii)
using the recursive properties of Chebyshev polynomials of the
second kind for implementing a fast modified formula for calculating
the diffraction profile, taking advantage of the constant step used for
encoding the sampled distances (Navaza, 2002; Cervellino et al., 2006;
Cervellino & Guagliardi, 2010).
The first case of a fast Debye formula implementation exploiting

the trick of a previously computed sampled-distances database dates
back to the early 2000s (Cervellino et al., 2004), when the analysis of
synchrotron data from mixtures of face-centred cubic (f.c.c.) and
multiple-twinned gold nanoparticles (icosahedral and decahedral)
made it possible to extract information about the structure types,
their concentration and their size distribution. The same philosophy
and all the tricks mentioned above are now introduced in the
DEBUSSY package, the goals and general features of which are
described in the next section.

2. Suite description: purpose and strategy

The DEBUSSY package is mainly aimed at the DFA of nanocrys-
talline materials. The first release described here is currently able to

deal with three types of (texture-free) nanostructures and their
relative size/shape distributions. The first type (case 1) includes
monoatomic f.c.c. crystalline (cuboctahedral) and f.c.c.-derived
noncrystallographic multiple-twinned particles (decahedral and
icosahedral structures), typically found in very small clusters of noble
metal samples (Au, Pd, Ag etc.) (Ino &Ogawa, 1967; Ino, 1969; Vogel,
1998; Kaszkur, 2000; Cervellino et al., 2003). The other two types of
nanostructures refer to defect-free crystalline materials featured in
uni- (case 2) or bivariate (case 3) families of particles of increasing
size. Cases (2) and (3) are suitable for describing many materials, such
as metals, oxides, semiconductors etc., of spherical, rod and plate-like
shapes. The general strategy of theDEBUSSY suite is to carry out the
analysis according to a double-step approach. The first step concludes
with the creation of a database containing the sampled interatomic
distances of NCs of increasing size. The second step performs the
DFA of experimental diffraction data, collected on both pure phases
and mixtures, using the previously created database(s). For case (1),
the first step is skipped, as the databases of sampled interatomic non-
dimensional distances for cubocta-, icosa- and decahedral clusters up
to about 50 nm in diameter are directly provided to users. For cases
(2) and (3), the suite enables users to build their own databases, by
executing a suite of three or five programs (step-by-step procedure)
or of five or seven programs (automatic procedure), depending on the
selected shape. The unit cell is used as the NC building block;
spherical and rod/plate-like shapes can be chosen to build up the
nanocrystal family.

Spherical NCs are grown according to a concentric shell model.
Discrete clusters of linearly increasing radii are obtained by applying
the relationship

rk ¼ r0 þ k!R; ð2Þ

where k & 0, r0 = !R and !R is a function of the cube root of the
unit-cell volume (a). An additional feasible requirement is that every
kth added shell contains an integer number of primitive unit cells, so
that the compound stoichiometry is preserved. For primitive cubic
(5), f.c.c. (6) and body-centred cubic (b.c.c.) (7) lattices, both
requirements are achieved by choosing
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Once the radii are fixed, every kth cluster is built up by selecting all
lattice nodes that are within rk of an appropriately chosen centre. For
every chosen lattice node, the content of a unit cell is added. Suitable
provisions for near-surface nodes or atoms may be necessary.

Rod- and plate-like shapes are obtained by combining the set of
Patterson vectors P = {'dkj = '(rk % rj), j > k = 1 . . . Nc} (Nc is the
number of atoms in the unit cell) with the set of lattice vector
translations of the unit cell L = n1a + n2b + n3c (n1, n2 and n3 are
integers, and a, b and c are the unit-cell defining vectors), according to
a layer-by-layer construction (see Cervellino & Guagliardi, 2010, for
more details) and under the assumption, which holds for biaxial
systems, of two kinetically different growth directions, one along the
three-, four- or sixfold crystallographic axis and the second in the
orthogonal plane.
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The suite (containing a total of 11 programs) enabling users to
build their own databases is named CLAUDE (the acronym stands
for crystalline layered user database).
The second step of the analysis is performed by the program

DEBUSSY on single- or multiple-phase specimens, trying to fit one or
more experimental data sets. DEBUSSY uses the previously created
database(s) and carries out the fast calculation of the diffraction
profile of each NC that contributes to the total pattern, according to a
suitable and adjustable size-distribution function. Different options
are also available to deal with lattice expansions or contractions
variable with the crystal size. Both Chebyshev polynomials and
experimentally collected data can be used to manage the background
component. Synchrotron or laboratory X-ray, neutron and electron
beams can be used to collect data; for all radiation types, the scat-
tering amplitudes/factors of atomic species are encoded into the
program.

2.1. CLAUDE suite

The tasks performed by CLAUDE are described graphically in
Fig. 1, along with the names of the programs: (a) calculating the
symmetry operators of the space group (MK_GROUP) starting from
the corresponding list of generators, available at the Bilbao Crys-
tallographic Server (http://www.cryst.ehu.es/); (b) expanding the
asymmetric unit into the entire atomic cell content (MK_CELL); (c)
building up uni- (MK_SPHERE) or bivariate (MK_RODS) families
of atomistic models of nanocrystals of different shapes using the unit
cell as the ‘building block’; (d) calculating the interatomic distances of
each NC (MK_DIST); (e) sampling the interatomic distances and
encoding these values in a suitable database (MK_SAMP).

This sequence of programs creates three types of databases (DBs):
(i) the DB collecting the atomistic models of all NCs and including
files of the Cartesian coordinates with extension .xyz (output of
MK_SPHERE and MK_RODS programs). Plot files for Jmol, an
open-source Java viewer for chemical structures in three dimensions
(http://www.jmol.org/), are also created; (ii) the DB collecting the files
of the interatomic distances of each NC with extension .dist; (iii) the
DB collecting the files of the sampled interatomic distances of each
NC with extension .smp.

For a bivariate size/shape family, a much faster program
(MK_LAYERS) is supplied, which creates only the .smp database.
Using MK_LAYERS is highly recommended in cases of large
families, to save computing time and disk space. The entire sequence
works with fixed-name files to input and transfer information
throughout the suite. This step-by-step CLAUDE execution is
described in detail in the manual, which is delivered as a .pdf file.
However, managing all the files and steps of the procedure (which
also includes the creation of suitable folders) can be quite a tedious
operation. For this reason, an automatic run (depicted in Fig. 2) has
been organized as follows: (a) all the input information is collected in
two files of fixed name and format, DB_Phase_Info.inp and
DB_CLU_Info.inp, grouping all details related to the phase and the
NC family that the user wishes to create, respectively; (b) three
additional programs have been introduced as utilities for managing
the input, creating the files used for the transfer of information and
launching the program of the appropriate step according to the flow
diagram depicted in Fig. 1; (c) the automatic run is dealt with through
a shell script.

It may be useful to supply some information about the computing
time and disk space required by the automatic CLAUDE procedure.
As an example, we give here the values for a family of rod-shaped
TiO2 NCs (anatase polymorph) with sizes of up to about 9 nm in the
ab plane and 19 nm along the c axis. Running the MK_LAYERS
program for creating the final database (.smp), the whole suite took
15 min on a Mac OS X 10.6.4 machine using a 3.2 GHz Intel Core i3
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Figure 1
A flow chart of the CLAUDE suite, illustrating how users can build their own
databases for crystalline materials according to a step-by-step procedure.

Figure 2
A flow chart of the CLAUDE suite, illustrating how users can build their own
databases for crystalline materials according to the automatic procedure.



processor, and 20 min on a Linux machine using a 3.0 GHz Intel Core
Duo processor. The same run required a disk space of 22.7 MB to
store the .smp database, while 1.8 GB were necessary to store all
three databases (.xyz, .dist and .smp) described above.
Once the final database of sampled distances is available, an

additional program (MK_PATTERN) enables the calculation of the
powder diffraction simulation from a single atomic cluster, a useful
utility for checking the correctness of the final output before running
the DEBUSSY program. An example of MK_PATTERN output is
shown in Fig. 3 for titanium dioxide, anatase polymorph, for a
spherical (bottom) and a rod-like (top) NC.

2.2. DEBUSSY program

DEBUSSY performs DFA of powder diffraction patterns collected
on nanosized crystalline and periodic but partly disordered materials.
A schematic view of the program flow chart is given in Fig. 4. Input
requirements are as follows: (i) the experimental data (one or more
files in the case of multiple data sets) and the working conditions
(wavelength, radiation, background info etc.); (ii) the sampled
distance database path (one for each phase), identified by a suitable
code to distinguish the different cases; (iii) starting values for the uni-
(two parameters) or bivariate (five parameters) log-normal size-
distribution function (Sampson & Siegel, 1985) and for size-depen-
dent lattice expansion or contraction (up to three parameters).
All the information and instructions are provided through an input

file, organized in three sections (data set, structure, simulation/
refinement/output). Any extension is accepted for this file but we
refer to it here using the extension .dwa to identify it. The program
can be used in simulation or refinement mode. An external file
(required extension .par) collects, for each structure, the starting
value and the upper/lower limit of the parameters, the former to be
used for simulations and the latter for refinement runs, along with
user-managed refinement codes supplied through an additional file
(required extension .ref). Simplex (Nelder & Mead, 1965) and
simulated annealing (Metropolis et al., 1958) algorithms are imple-
mented to optimize the starting model, and multiple refinement
stages can be encoded in the .ref file.
Each DEBUSSY run creates (or overwrites) a number of ASCII

files. Some of these are used to supply sample statistics (average
particle size and dispersion for uni- and bivariate distributions, weight

fractions) and data suitable for graphical use (calculated total and
single-phase patterns; values of the size, number and mass distribu-
tions, mass, volume, distance deformation etc. for each nanoparticle),
while others are used to save the parameters corresponding to the
best solution of a refinement run, to be used as the input of a new
execution. The user manual, available as a .pdf file, describes the
main DEBUSSY inputs and outputs and provides some useful
examples.

An example of the performance of DEBUSSY is presented here
for a sol–gel-synthesized anatase powder and can be seen in Fig. 5,
where the starting and final pattern models are matched to the
experimental synchrotron data in the angular range 8–115). The
measurements were carried out at the PSI-SLS MS4-Powder beam-
line (Switzerland) using a Debye–Scherrer capillary transmission set
up, an energy beam of 17 keVand a Mythen detector (Bergamaschi et
al., 2010), allowing the full pattern to be collected in a few seconds.
The following parameters were refined: the pair average/standard
deviation of the bivariate log-normal size distributions along the two
growth directions (a1 and s1 in the ab plane, and a2 and s2 along the c
axis) and their correlation angle ( ); the Ti occupancy factor; three
coefficients that linearly correct the isotropic atomic Debye–Waller
factor as a function of size along the two growth directions; scale and
Chebyshev polynomial coefficients (12) modelling the background.
Starting values (in terms of the number of stacked cells) of 7.0, 2.0,
7.0, 2.0 and 0.0 were refined to 8.525, 6.111, 9.0, 4.833 and %9.171 for
a1, s1, a2, s2 and  , respectively. The Ti occupancy refined to an
average value of 0.92, indicating the occurrence of vacancy defects, as
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Figure 3
The X-ray pattern simulations (" = 0.72 Å) created by the MK_PATTERN utility
of the CLAUDE suite for a rod-like-shaped (top) and a spherical (bottom)
nanocrystal of titanium dioxide (anatase), taken from the corresponding bi- and
univariate families of NCs created by CLAUDE. Jmol plots of the atomistic models
of the two NCs are shown in the insets.

Figure 4
A pictorial scheme of the DEBUSSY program, highlighting the information
required as input, the two modes of using the program (simulation and refinement)
and some graphics of the output information.



perviously reported in sol–gel-prepared anatase (Grey & Wilson,
2007). The refinement was performed following a multi-stage user-
defined approach. The best-fit agreement indices are Rwp

= 4.26,
goodness of fit = 3.30. The data analysis provided an average rod-
shaped nanocrystal of 3.25' 1.79 nm in the ab plane (diameter of the
equivalent circle) and 8.05 ' 3.67 nm along the c axis.

3. Supported platforms and distribution

The DEBUSSY suite can presently run on Linux and Mac OS X
platforms. Binary files for Linux 32-bit, Linux 64-bit, and Mac OS X
10.5 and 10.6 are available upon request. Binaries and source codes
will soon be accessible at the dedicated URL http://debussy.
sourceforge.net. For program distribution and any support for the
suite, contact A. Guagliardi (antonella.guagliardi@ic.cnr.it) or A.
Cervellino (antonio.cervellino@psi.ch).

Partial financial support by Fondazione Cariplo (project No. 2009-
2446) is acknowledged. The X-ray powder diffraction data of TiO2

were recorded at the MS4-Powder beamline of the SLS synchrotron,
Villigen, Switzerland. The authors thank Dr Mario Oriani for his
technical support.
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Figure 5
DEBUSSY output. (a) Initial and (b) final pattern fit of TiO2 anatase, after refining
the parameters of the bivariate log-normal size/shape distribution, Ti occupancy
and parameters that linearly correct the isotropic atomic Debye–Waller factor as a
function of size. Agreement indices in (a) are Rwp

= 11.59 and goodness of fit = 8.98,
and in (b) are Rwp

= 4.26 and goodness of fit = 3.30.
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