

Physics at Mu3e

The search for $\mu^+ \rightarrow e^+e^-e^+$

May 16, 2023 | New Frontiers in Lepton Flavor | Pisa (IT)

Cristina Martin Perez on behalf of the Mu3e Collaboration | ETH Zurich

•

• Charged lepton flavor violation (cLFV) has not been observed

Lepton flavor is strictly conserved in the Standard Model ($m_v=0$)

- it is heavily suppressed (via neutrino mixing)

$$\mathscr{B}_{\mu
ightarrow eee} \propto \left(rac{\Delta m_{
u}^2}{m_{\scriptscriptstyle W}^2}
ight)^2 \quad
ightarrow \quad \mathscr{B}_{\mu
ightarrow eee} < 10^{-54}$$

- Observation of cLFV would be an unambiguous sign of **new physics** beyond the SM
 - SUSY, GUT, extended Higgs sector, ...

Lepton flavor violation

... but there are **neutrino oscillations** ($m_v \neq 0$)

Muons

as probes of cLFV

- Muons are a versatile probe of charged lepton flavor violation:
 - clean: long lifetime, few and simple SM decay modes
 - available at high-intensity muon beams (PSI, J-PARC, Fermilab)
 - sensitive: high mass scales, model-independent effective Lagrangian

Golden muon channels

looking for cLFV

• Three golden channels in muon decays:

Current limit: MEG $\mathcal{B} < 4.2 \times 10^{-13}$

Future: MEG II $\mathcal{B} < 5 \ge 10^{-14}$

Current limit: SINDRUM II \mathcal{B} (Au) < 7 x 10⁻¹³

µ-N→e-N

Future: Mu2e, COMET $\mathcal{B} < 10^{-16}$

Current limit: SINDRUM II $\mathcal{B} < 1.0 \ge 10^{-12}$

Future: **Mu3e** (PSI) $\mathcal{B} < 10^{-16}$

- Complementarity in sensitivity to scalar, vector and tensor interactions
 - comparison gives insight into the **nature** of the new physics

The Mu3e experiment

in the search for $\mu^+ \rightarrow e^+e^-e^+$

- Mu3e is a future experiment in the search of the cLFV decay µ+→e+e-e+
- Goal:
 - Observe $\mu^+ \rightarrow e^+e^-e^+$ if $\mathcal{B} > 10^{-16}$
 - Exclude $\mathcal{B} > 10^{-16}$ at 90% CL
- Two-stage approach:
 - $\mathcal{B} < \text{few } 10^{-15}$ in phase I (2025-26)
 - $\mathcal{B} < 10^{-16}$ in phase II (2029+)
- Under construction at the Paul Scherrer Institute (PSI) in Switzerland
- ~70 collaborators from institutes in Switzerland, Germany and UK

Signal and related kinematics

- Common vertex
- Time coincidence
- $|\Sigma \vec{p}| = 0$
- $\Sigma E = m_{\mu}$

• Unknown underlying cLFV mechanism

- Phase I: Need > 10¹⁵ muons
- 2.5 x 10⁷ s (290 days) at 20% efficiency
 - Rate > 1 x 10⁸ muons/s

Backgrounds

and related kinematics

Muon radiative decays **Internal conversion** with internal conversion Signal VS. $\mu^+ \rightarrow e^+e^-e^+\nu\nu$ 10-12 Branching Ratio 10⁻¹⁴ Signal 10-16 $\mathcal{B} = 3.4 \times 10^{-5}$ Internal conversion background 10-18 Common vertex 102 103 104 105 106 101 Common vertex e⁺e⁻e⁺ mass (MeV/c²) Time coincidence Time coincidence Branching Ratio as a function of cut on m - Etot $|\Sigma \vec{p}| \neq 0$ o10-1 $|\Sigma \vec{p}| = 0$ Rat missing energy 010⁻¹³ • $\Sigma E \neq m_u$ from two neutrinos • $\Sigma E = m_{\mu}$ R.M.Djilkibaev steeply falling! R.V.Konoplich PRD79 (2009) 10-19 10-16 missing energy taken 3 by neutrinos Excellent momentum 10-17 and total energy 10-18 resolution (<1 MeV) 10-19 0 1 2 3 4 5

m_u - E_{tot} (MeV)

Backgrounds

and related kinematics

Momentum measurement

and multiple scattering

- Apply strong magnetic field (**1T**) and measure the curvature of the particles
- Muon decays at rest into **low energy** electrons and positrons (<53 MeV):
 - Momentum resolution dominated by multiple scattering, not position resolution
- Detector resolution Multiple scattering Detect uncertainty resolutio Multiple Multiple scattering scattering uncertainty Detector layer Particle track Detector layer Particle track Detector la Particle track MS MS θ_{MS} $\boldsymbol{\theta}_{_{MS}}$ $\Omega \sim \pi$ $\bigotimes \vec{B}$ $\bigotimes \vec{\mathsf{B}}$

• At first order:

- MS uncertainties cancel out after half turn
- Allow particles to **recurl** in the detector

Mu3e design

based on experimental requirements

- Very challenging (compact) experimental design:
 - Unknown cLFV kinematics \rightarrow large solid angle and kinematic **acceptance**
 - High muon rates \rightarrow high **granularity** and **fast** processing
 - Internal conversion \rightarrow excellent **momentum** resolution
 - Accidental background → good timing / vertex resolution
 - Multiple scattering → low material budget, optimized recurling

Beam and target

• **10⁸ muons/s** stopped on a thin hollow stopping target

Magnetic field

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field

Inner pixel detector

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field
- Two layers of ultra thin silicon pixels for **vertexing**

Outer pixel detector

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field
- Two layers of ultra thin silicon pixels for vertexing
- Two outer pixel layers for 4-hit **track** reconstruction

Scintillating fibres detector

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field
- Two layers of ultra thin silicon pixels for vertexing
- Two outer pixel layers for 4-hit track reconstruction
- Scintillating fibres for precise timing and charge measurement

Recurl pixel detector

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field
- Two layers of ultra thin silicon pixels for vertexing
- Two outer pixel layers for 4-hit track reconstruction
- Scintillating fibres for precise timing and charge measurement
- Pixel recurl stations for optimal momentum resolution and acceptance

Scintillating tiles detector

- 10⁸ muons/s stopped on a thin hollow stopping target
- Helical tracks in strong uniform 1 T magnetic field
- Two layers of ultra thin silicon pixels for vertexing
- Two outer pixel layers for 4-hit track reconstruction
- Scintillating fibres for precise timing and charge measurement
- Pixel recurl stations for optimal momentum resolution and acceptance
- Extra scintillating tiles for optimal **timing**

Muon beam

HIPA proton accelerator

- Phase I: high-intensity continuous muon beam
- **HIPA** proton accelerator at PSI in Switzerland:
 - 2.2 mA protons at 590 MeV (1.5 MW)
 - protons \rightarrow pions \rightarrow "surface" muons
- World's most intense **DC muon beam**:
 - Low momentum ~28 MeV
 - $\pi E5$ / CMBL shared MEG II and Mu3e
 - 1.4 x **10⁸ muons/s** delivered

Stopping target

and magnet

- Stopping target:
 - Hollow and double-cone
 - Made in Mylar
 - Stops ~96% of muons

- Solenoidal superconducting magnet:
 - Precise momentum reconstruction with recurlers
 - Strong magnetic field 1 Tesla
 - Stable and homogeneous
 - Delivered at PSI, operational

Pixel detectors

Mechanics

- Vertex identification and momenta measurement:
 - Very thin, fast, precise hit information
- Cylindrical, 4 layers (2 inner + 2 outer)
 - Central station for precise track reconstruction
 - Recurl stations for high purity and acceptance
- Cooled by innovative gaseous helium system

Detector mount

Pixel ladders

carrying sensor chips

Pixel detectors

Sensors

- **MuPix** high voltage monolithic active pixel sensors (**HV-MAPS**):
 - HV-CMOS, 180 nm technology, fully monolithic
 - 20 x 23 mm² sensors with 80 x 80 µm² pixels
 - Large depletion region, fast charge collection via drift (~ns)
 - Digital electronics embedded in N-well ("smart diode")
 - Can be thinned down to 50 µm (~1‰ X₀)
- Efficiency > 99%, time resolution < 20 ns
- Final version (**MuPix11**) operational

See talk by T. Rudzki this afternoon

Timing detectors

Scintillating fibres detector

- Suppress combinatorial background and enable charge identification:
 - High rates, low material, good timing
- Cylindrical, central station:
 - 12 ribbons with 3 layers of 250 µr
- Readout with SiPM arrays and dedicate
- Cooled down to -10°C with silicon oil
- Efficiency > 95%, time resolution ~ 250

Cristina Martin Perez | ETH Zurich

1.5 ph.e., MPV: 2.4

Timing detectors Readout ASIC

- **MuTRiG -** Custom readout ASIC for SciFi and SciTiles:
 - Fast SiPM readout at high rates, based on UMC 180nm CMOS
 - High resolution TDC (50 ps)
 - High rate acceptance (~1 MHz/channel)
 - Tunable output event structure (separate time and energy thresholds)
 - **Clustering** logic on-chip (coincidence)
- Final version (MuTRiG3) under validation

Data acquisition system

and online reconstruction

• **Triggerless** continuous (zero-suppression) readout of all sub-detectors:

Mu3e timeline

from construction to physics

Integration

- "Integration" and "cosmic" runs (PSI, 2021/22), test beam campaigns, thermo-mechanical mock-ups...
- Integration of services, cooling and DAQ •
- Hardware validation in magnet and beam
- Combined vertex-SciFi and vertex-SciTiles operation
- **Reconstruction** of cosmic tracks and recurl electrons, • sub-detector correlations,

140

120

100

80

60

40

Construction and commissioning

2028

2029

2027

Integration of sub-detectors and DAQ with final hardware

2026

Phase I detector construction has started

2025

2024

- consolidating production and QC pipelines
- Permanent staging/construction area at PSI
 - detector installation, QC and commissioning

Physics in phase I

- Track reconstruction via simulation:
 - Vertex resolution ~0.3 mm
 - Momentum resolution ~0.9 MeV
 - Reconstruction of recurlers improves momentum resolution up to a factor 10

Physics in phase I

 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029

- Expected physics sensitivity in phase I:
 - Background-free measurement (<1 event) for > 2.5 x 10¹⁵ muon
 - ~300 days of continuous running at 1 x 10⁸ muon stops / s

Karlsruhe Institute of

High Intensity Muon Beam

• **Phase II:** $\mathcal{B} < 10^{-16}$ (90% CL) \rightarrow not reachable with $\pi E5$ beamline

2027

2028

• High Intensity Muon Beam (HIMB) at PSI:

2025

2021

2023

2024

 Ground-breaking muon research (particle physics, condensed matter) at PSI for the next 20+ years

- New target (TgH) and solenoid-based beamline (MUH2)
- 10¹⁰ surface muons/s at 28 MeV

Phase II detector upgrades

 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029

- Higher beam emittance (x10):
 - higher magnetic field (2T) and/or new moderator
- Higher stopping rate, better accidental background (x400) suppression:
 - longer and narrower **target** (gaseous?)
- Higher occupancy, better timing:
 - ultra-fast pixel detector layer (<100 ps), closer to inner layers
- Larger acceptance, improved momentum resolution:
 - elongated pixel trackers, smaller radius, fifth layer
- Larger data rate (x20) and combinatorics:
 - faster readout, online data processing with more **powerful** filter farm

Conclusions

and outlook

- Mu3e will search for the cLFV decay $\mu^+ \rightarrow e^+e^-e^+$ with a sensitivity of 10⁻¹⁶
 - unique discovery potential for **new physics**
- It faces many technical challenges...
 - compact design, low material budget, fine granularity, high rates
- ...with innovative **technologies**:
 - HV-MAPS, gaseous helium cooling, MuTRiG readout, GPUs
- We are now in **commissioning** phase:
 - two commissioning runs probed the production readiness
 - ongoing detector construction and QC
- The start of **phase I** data-taking (B < 10^{-15}) is expected in 2025
- Beam and detector upgrades are foreseen for phase II (B < 10⁻¹⁶) starting in 2029

Thanks for listening!

Link to Technical Design Report Link to HIMB physics case

Back-up

Area

Beam, target, magnet

MAGNET PARAMETER	VALUE
nominal field	$1.0\mathrm{T}$
warm bore diameter	$1.0\mathrm{m}$
warm bore length	$2.7\mathrm{m}$
field inhomogeneity $\Delta B/B$	$\leq 10^{-3}$
field stability $\Delta B/B$ (100 days)	$\leq 10^{-4}$
field measurement accuracy $\Delta B/B$	$\leq 2.0\cdot 10^{-4}$
outer dimensions: length	$\leq 3.2\mathrm{m}$
width	$\leq 2.0\mathrm{m}$
\mathbf{height}	$\leq 3.5\mathrm{m}$

Pixel tracker

number of MUPIX sensors per ladder

instrumented length [mm]

minimum radius [mm]

17

351.9

73.9

6

124.7

29.8

6

124.7

23.3

18

372.6

86.3

Pixel sensors

sensor dimensions $[mm^2]$	$\leq 21 \times 23$
sensor size (active) [mm ²]	$\approx 20 \times 20$
thickness [µm]	≤ 50
spatial resolution µm	≤ 30
time resolution [ns]	≤ 20
hit efficiency [%]	≥ 99
#LVDS links (inner layers)	1(3)
bandwidth per link [Gbit/s]	≥ 1.25
power density of sensors $[mW/cm^2]$	≤ 350
operation temperature range [°C]	0 to 70

	Requirements	MuPix7	MuPix8	MuPix10
pixel size [µm ²]	80 imes 80	103×80	81×80	80×80
sensor size $[mm^2]$	20 imes 23	3.8×4.1	10.7×19.5	20.66×23.18
active area $[mm^2]$	20 imes 20	3.2×3.2	10.3 imes 16.0	20.48×20.00
active area $[mm^2]$	400	10.6	166	410
sensor thinned to thickness [µm]	50	50,63,75	63,100	50, 100
LVDS links	3 + 1	1	3 + 1	3+1
maximum bandwidth [§] [Gbit/s]	3 imes 1.6	1×1.6	3 imes 1.6	3 imes 1.6
timestamp clock [MHz]	≥ 50	62.5	125	625
RMS of spatial resolution [µm]	≤ 30	≤ 30	≤ 30	≤ 30
power consumption $[mW/cm^2]$	≤ 350	$pprox 300^{\dagger}$	250 - 300	pprox 200
time resolution per pixel [ns]	≤ 20	≈ 14	$\approx 13 \ (6^*)$	not meas. [‡]
efficiency at $20 \mathrm{Hz/pix}$ noise [%]	≥ 99	99.9	99.9	99.9
noise rate at 99 $\%$ efficiency [Hz/pix]	≤ 20	< 10	< 1	< 1
amplifier type	no spec.	PMOS	PMOS	PMOS
amplifier stages	no spec.	2	1	1
timestamp representation	no spec.	$8 \mathrm{bit}$	10 bit	11 bit
ToT representation	no spec.	-	6 bit	$5 \mathrm{bit}$
ring transistors (irradiation tolerant)	no spec.	no	yes	yes
approx. substrate resistivity $\left[\Omega \operatorname{cm}\right]$	no spec.	≈ 20	pprox 20, 80, 200	pprox 200

Pixel sensors

Mupix10 Threshold Distribution

SciFi

·		32.	5 mm			
					inininin	
222232222222	1111111			<u> 1999</u>	-1-1-1-1-1-	******
			2	7	7	

characteristic	value
cross-section	round
emission peak [nm]	450
decay time [ns]	2.8
attenuation length [m]	>4.0
light yield [ph/MeV]	n/a (high)
trapping efficiency [%]	5.4
cladding thickness $[\%]$	3 / 3
core	Polystyrene (PS)
inner cladding	Acrylic (PMMA)
outer cladding	Fluor-acrylic (FP)
refractive index	1.59/1.49/1.42
density $[g/cm^3]$	1.05/1.19/1.43

characteristic	value
breakdown voltage	$52.5\mathrm{V}$
variation per sensor	$\pm 250\mathrm{mV}$
variation between sensors	$\pm 500\mathrm{mV}$
temperature coefficient	$53.7\mathrm{mV/K}$
gain	$3.8\cdot 10^6$
direct crosstalk	3%
delayed crosstalk	2.5%
after-pulse	0%
peak PDE	48%
max PDE wavelength	$450\mathrm{nm}$
mean quench resistance R_Q	$490\mathrm{k}\Omega$ at $25^{\mathrm{o}}\mathrm{C}$
recovery time $ au_{ m recovery}$	$(68.9\pm2.1)\mathrm{ns}$
short component $ au_{\mathrm{short}}$	$< 1\mathrm{ns}$
long component $ au_{ m long}$	$(50.1\pm4.1)\mathrm{ns}$

SciTiles

MuTRiG

	STiCv3.1	MUTRIG
number of channels	64	32
LVDS speed [Mbit/s]	160	1250
8b/10b encoding	yes	yes
event size [bit]		
standard event	48	47
short event	-	27
event rate / chip [MHz]		
standard event	~ 2.6	~ 20
short event	-	$\sim \! 38$
event rate / channel [kHz]		
standard event	$\sim \! 40$	~ 650
short event	-	~ 1200
power per channel [mW]	35	35
size [mm x mm]	5x5	5x5
number of PLLs	2	1

Mechanics and power

Online reconstruction

Simulation

Unprecedented muon dataset (>10¹⁶) 10^{-4} can be exploited in online searches:

Other searches with Mu3e

BABAR BABAR PHENIX BESIII 2014 Mu3e: Work in progress adapted from 1705.04265 10^{-1} $m_{A'}$ [GeV] 10 1 µ→eX (X unobserved) monoenergetic e+ μ→ευυ ex. familons (Goldstone boson from spontaneously broken flavor symmetry) p(e)

KLOE 2013

OE 2014