Quality Control Development for MuPix11 for the Mu3e Detector

Anna Lelia Fuchs | PI Uni Heidelberg

On behalf of the Mu3e collaboration

The Mu3e Experiment

- Search for the cLFV $\mu^+ \rightarrow e^+e^-e^+$ decay
- SM Branching fraction < 1 x 10⁻⁵⁴
- Evidence of physics beyond the standard model.
- Tracking detector requirements:
 - Momentum resolution < 0.5 MeV
 - Low material budget

K. Arndt et al.

The Mu3e Experiment

- Search for the cLFV $\mu^+ \rightarrow e^+e^-e^+$ decay
- SM Branching fraction <1 x 10⁻⁵⁴
- Evidence of physics beyond the standard model.
- Tracking detector requirements:
 - Momentum resolution < 0.5 MeV
 - Low material budget

K. Arndt et al.

This will be achieved using 2844 MuPix11 pixel sensors.

A pixel sensor with High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) technology at $50 \,\mu\text{m}$ / $70 \,\mu\text{m}$.

A pixel sensor with High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) technology at 50 μm / 70 $\mu m.$

HV-MAPS feature:

- A high reverse bias voltage.
- Integration of readout electronics on the sensor.

A pixel sensor with High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) technology at $50 \,\mu\text{m}$ / $70 \,\mu\text{m}$.

HV-MAPS feature:

- A high reverse bias voltage.
- Integration of readout electronics on the sensor.

A pixel sensor with High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) technology at $50 \,\mu\text{m}$ / $70 \,\mu\text{m}$.

HV-MAPS feature:

- A high reverse bias voltage.
- Integration of readout electronics on the sensor.

The functionality of each sensor must be verified before installation.

Aim: To evaluate if a sensor can perform the functions necessary for operation in the Mu3e detector.

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

Aim: To evaluate if a sensor can perform the functions necessary for operation in the Mu3e detector.

• Five individual chip tests to observe key functions.

Aim: To evaluate if a sensor can perform the functions necessary for operation in the Mu3e detector.

- Five individual chip tests to observe key functions.
- Sensors are categorised as passed, passed with limitations or failed for each test.

Aim: To evaluate if a sensor can perform the functions necessary for operation in the Mu3e detector.

- Five individual chip tests to observe key functions.
- Sensors are categorised as passed, passed with limitations or failed for each test.
- A sensor which passes all tests passes the quality control.

• Temporary, non-invasive connection

- Temporary, non-invasive connection
- Probe card with a needle mechanism

- Temporary, non-invasive connection
- Probe card with a needle mechanism

Probe card for MuPix11QC

<u>L. Vigani</u>

- Temporary, non-invasive connection
- Probe card with a needle mechanism

- Temporary, non-invasive connection
- Probe card with a needle mechanism
- Quick testing of multiple chips

Developing evaluation strategies

Improving for accuracy

Optimisation for speed

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 6

Developing evaluation strategies

Improving for accuracy

Optimisation for speed

- Identify key functions
- Identify functionality indicators
- Quantify desired output

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 6

Developing evaluation strategies

Improving for accuracy

Optimisation for speed

- Identify key functions
- Identify functionality indicators
- Quantify desired output

- Investigation of failure modes
- Reduction of errors in testing
- Understanding component failures

Developing evaluation strategies

Improving for accuracy

Optimisation for speed

- Identify key functions
- Identify functionality indicators
- Quantify desired output

- Investigation of failure modes
- Reduction of errors in testing
- Understanding component failures

- Target functionality indicators
- Remove excess measurements

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 7

Tested function:

Can the sensor deplete pixels to sufficient sensitivity while maintaining a low leakage current?

Tested function:

Can the sensor deplete pixels to sufficient sensitivity while maintaining a low leakage current?

Procedure:

- Increase bias voltage in set intervals and measure the leakage current.
- Stop when the current limit is reached.

Tested function:

Can the sensor deplete pixels to sufficient sensitivity while maintaining a low leakage current?

Procedure:

- Increase bias voltage in set intervals and measure the leakage current.
- Stop when the current limit is reached.

Tested function:

Can the sensor deplete pixels to sufficient sensitivity while maintaining a low leakage current?

Procedure:

- Increase bias voltage in set intervals and measure the leakage current.
 Stop when the current limit is reached.
 Evaluation:

 Is a switchle bias voltage reached?
 - Is a suitable bias voltage reached?
 - What is the necessary bias voltage?

IV Curve

Current Limit

Breakdown

Damage

Region Final

1

2

2

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 8

Fixed contact strategy

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 8

Fixed contact strategy

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

Flexible contact strategy

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

Flexible contact strategy

- Individual pressure applied to each sensor.
- Stable contact reduces false failures

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 8

- Same pressure applied to every sensor.
- Contact is a frequent failure mode.

- Individual pressure applied to each sensor.
- Stable contact reduces false failures

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

QC Development | 8

The improvements to the quality control procedure led to a more effective evaluation.

The improvements to the quality control procedure led to a more effective evaluation.

• The 70 µm QC yield improved to **66%**.

The improvements to the quality control procedure led to a more effective evaluation.

• The 70 µm QC yield improved to 66%.

The improvements to the quality control procedure led to a more effective evaluation.

• The 70 µm QC yield improved to 66%.

The improvements to the quality control procedure led to a more effective evaluation.

The 70 μm QC yield improved to 66%.

QC development for MuPix11 | Anna Lelia Fuchs | PI Uni Heidelberg

Yield artificially reduced by light effects

B. Weinläder

The developed quality control procedure accurately evaluates MuPix11 functionality.

B. Weinläder

The developed quality control procedure accurately evaluates MuPix11 functionality.

• The preliminary quality control yield is **66%**.

B. Weinläder

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.
- The yield can be artificially reduced by light effects.

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.
- The yield can be artificially reduced by light effects.
- The QC yield is relevant for production plans.

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.
- The yield can be artificially reduced by light effects.
- The QC yield is relevant for production plans.
- Current stage:
 - Ladder production

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.
- The yield can be artificially reduced by light effects.
- The QC yield is relevant for production plans.
- Current stage:
 - Ladder production

T. Rudzki

The developed quality control procedure accurately evaluates MuPix11 functionality.

- The preliminary quality control yield is **66%**.
- Most common failures:
 - Powering, LVDS links, analogue circuitry.
- The yield can be artificially reduced by light effects.
- The QC yield is relevant for production plans.
- Current stage:
 - Ladder production
 - Optimisation for speed

T. Rudzki

Bibliography

Sources directly used in this presentation. For all contributing sources, see thesis bibliography.

- G. Hernández-Tomé, G. López Castro, and P. Roig. "Flavor violating leptonic decays of τ and μ leptons in the Standard Model with massive neutrinos". DOI: 10.1140 / epjc / s10052 - 019 - 6563 - 4.
- A. Blondel et al. Research Proposal for an Experiment to Search for the Decay μ- > eee.
 2013. arXiv: 1301.6113 [physics.ins-det].
- K. Arndt et al. "Technical design of the phase I Mu3e experiment". doi: 10.1016/j.nima.2021.165679.
- I. Perić, "A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology", 2007.

The MuPix11 Quality Control Tests

Each test evaluates a functions required for successful operation.

Test	Key Function	Fail Criteria
IV Scan	Pixel biasing for hit detection	High leakage current
LV Power- On	Powering of on-chip circuitry	Unsuitable LV current
Internal Voltages	Optimisation of the supply voltages	Incorrect voltages received
VDAC Scans	Setting of key voltages by	Unsuitable voltage
	Digital-to-Analogue Voltage Converters.	or current response
LVDS Links	Data Transmission	Errors in transmitted data

Improving for accuracy: the VDAC Scans

The VDAC scans investigate key components of the on-chip circuitry.

The VSS scan shows the current supplied to the amplifier against the VSS setting.

The VDAC Scan

The VDAC scan investigates key components of the on-chip circuitry.

Observations:

- Localised component failures.
- Most failures for analogue circuitry components.
- Higher failure rates for 50 µm.

<u>Context:</u>

- Significant short risk for the analogue domain.
- 50 µm sensors experience more thinning.
- Low sample size.

		Number of Failures	
VDAC	Location	$70\mu{ m m}$	$50\mu{ m m}$
VSS1	Pixel	4	10
VSS2	Pixel	4	10
BLPix	Pixel	6	10
Baseline	Periphery	3	7
ThHigh	Periphery	2	7
ThLow	Periphery	2	7
Total sensors:		44	44

Failure profile: 50 µm sensors

The 50 μ m yield is limited by the IV scan.

The low yield accurately describes the observed behaviour of the sensors.

Why do the sensors show high leakage currents?

- Functionality?
- Systematic error?

Light dependency

Light dependency of the leakage current is inherent to silicon semiconductor pixels.

- ~2 mm diameter hole on the probe card lid.
- The 50 µm wafer was tested with the ceiling light switched on.
- The effect of light incident through the lid was investigated.

Light incident on the setup caused functional sensors to fail the IV scan.

The 50 µm yield can be improved

Yield estimate: Comparison with trends

Conservative estimate for improved IV yield: 75%

- Lowest yield 70 µm: 82%
- Total yield 70 µm: 66%

Estimate for overall 50 yield: 59%

	$50\mu\mathrm{m}$ Yield (%)	
Test	Previous	Improved
IV Scan	53.2	54.5
LV Power-On	70.9	77.3
Internal Voltages	51.9	79.5
VDAC Scan	55.7	75.0
LVDS Links	74.7	75.0

	70 µm Yield (%)	
Test	Previous	Improved
IV Scan	65.9	90.9
LV Power-On	65.5	81.8
Internal Voltages	70.1	88.6
VDAC Scan	65.5	81.8
LVDS Links	65.5	81.8

Thinning damage

- Grinding
 - \circ Grooves
 - SSC
 - \circ Warping

- Plasma- etching
 - Etching pits

Contribution to leakage current

- Diffusion of minority charge carriers
- Volume leakage
 - ~√(Ubias)
 - ~T
 - Saturates at full depletion
- Surface contribution
 - Relevant after full depletion
 - Linear increase

K-Value analysis of the IV Scan

QC development for MuPix11 | Anna Lelia Fuchs | Pl Uni Heidelberg

Evaluation of the IV Scan

QC development for MuPix11 | Anna Lelia Fuchs | Pl Uni Heidelberg

QC development for MuPix11 | Anna Lelia Fuchs | Pl Uni Heidelberg

Depletion simulations

A. Meneses

MuPix11 Detail

Pixel size ~ 80 x 80 microns

Feature	Target
Sensor dimensions [mm]	$\leq 21 \ge 23$
Sensor size [mm]	$\approx 20 \ge 20$
Thickness $[\mu m]$	≤ 50
Spatial resolution $[\mu m]$	≤ 30
Time resolution [ns]	≤ 20
Hit efficiency [%]	> 99
Number of LVDS links	1
(inner layers)	(3)
Bandwidth per link [Gbit/s]	≥ 1.25
Power density $[mW/cm^2]$	≤ 350
Operation temperature range [°C]	0 - 70

New evaluation strategy: VDAC

New evaluation strategy: VDAC

K-Value analysis of the IV Scan

Aim: to find the limits of the damage region to find a point of stable IV behaviour

$$K = \left(\frac{|\Delta I|}{|\Delta V|}\right) * \left|\frac{V}{I}\right|$$

Failure profile: 70 µm sensors

Most common failures: the LV power-on test and the VDAC scan .

The LV power-on yield can be improved slightly:

- Some sensors recover the LV current after voltage optimisation.
- This shows functionality.
- A chip recovery strategy is suggested.
- Powering remains a key failure mode.

	$70\mu\mathrm{m}$ Yield (%)	
Test	Strong	Weak
IV Scan	88.6	90.9
LV Power-On	79.5	81.8
Internal Voltages	86.4	88.6
VDAC Scan	79.5	81.8
LVDS Links	81.8	81.8

7-Step Power-On

- Powering of individual components unsuccessful
- Unoptimised supply voltage
- Can be repeated for evaluation
- Not necessary
- Already evaluated by other tests

Heidelberg 08.01.2024 | Anna Lelia Fuchs | Pl Uni Heidelberg