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Mu3e Experiment

Search for charged Lepton Flavor Violation

• Through a decay µ+
→ e+e+e−

• Allowed in the Standard Model

but not observable (Br < 10−54)

• Any observation will point to New Physics

e+

µ+ e+
νµ νe

W+

e−

Neutrino mixing

γ∗

SM µ+
→ e+e+e−

Current experimental status:

• SINDRUM (1988) Nucl.Phys.B299(1988)1

• Br < 10−12 at 90% C.L.

Mu3e aims for sensitivity of 2 · 10−15 (Phase 1)

• Under construction at Paul Scherrer Institute

using existing beam line (πE5, 108µ/s)

• Further improve to 10−16 (Phase 2) with new

beam line (HIMB)
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114 × Front-End Board (Arria V)

readout for pixels, fibres and tiles

lvds to optical links

4 × Switching board (LHCb PCIe40, Arria 10)

merge and sort data streams

Chain of 12 × Receiving board (DE5a NET, Arria 10)

Transfer data to GPU for online reconstruction

• Intel FPGAs: two main (Arria V and Arria 10), one auxilary (MAX 10)

• Three boards (FEB, SWB/PCIe40 and Farm/DE5a)

• Several firmware configurations (mupix/scifi/scitile, DDR3/4, test

stands)
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Overview

• Several firmwares base on Intel FPGAs

• Many developers and users in different locations

(MZ, HD, ZH, PSI and UK)

• Development in Git (10k commits in 5 years)

(want to avoid generated files to keep repository manageable)

• Use CI (Continuous Integration) to track status of firmwares

(build, simulation)
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Overview

Firmware compiled with Quartus Prime software:

• Different Quartus versions

• Different Intelectual Property (IP) blocks in different FPGAs (RAM,

transceivers, NIOS, etc.)

• Most actions are done via GUI and are not suitable for CI

• Typycal workflow requires to keep generated IP files in a project (e.g.

1000 files for FEB firmware)

Solution:

• Command line build system:

• Make target for each part of the build process

• Scripts to assemble NIOS and other IPs

(no need to keep generated files)

• Simulation scripts for GHDL and Modelsim

• This system allow to perform all steps (build, etc.) on each commit in CI
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IP Components

IPs:

• LVDS - connection to pixel sensors

• Optical transceivers - communication between boards

• NIOS CPU - initialization of on board components, monitoring during

development

Problem:

• Different FPGA and sub-projects may need different configuration

or tools (Quartus System Integration QSYS or Quartus Mega Wizard)

• Only specific parameters need adjustment

(difficult to keep track within GUI)

• Quartus produces alot of artifacts

(thousands of vhdl/verilog and other files)
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IP Components

• Use Quartus TCL scripts to generate and configure components

(LVDS 1250 Mbps, XCVR 10 Gbps and 6250 Mbps, etc.)

• Use QIP files to include generated files and to create project structure
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Soft CPU - NIOS

• NIOS provides set of components (I2C, SPI, RAM interface, etc.)

that can be controlled from software (C/C++)

• Software uploaded from internal RAM or externaly via JTAG

• NIOS can be configured via QSYS GUI, but difficult to track

configuration for sub-projects
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Soft CPU - NIOS

• Use base TCL script with common configuration for all sub-projects

• Can specify amount of memory, additional RAM interfaces, etc.

• Mostly same component interface, also generated via command line

# base configuration (common for all sub -projects)

source {util/nios_base.tcl}

# configure total RAM size

set_instance_parameter_value ram {memorySize} {0 x00010000}

# configure SPI lines count

set_instance_parameter_value spi numberOfSlaves 16

# SPI lines for FEB SI clock chips

source {fe/nios_spi_si.tcl}

# A10 external flash configuration

source {util/flash1616.tcl}
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Hardware compilation - Flow

• Typical steps for firmware compilation:

• Generate IPs via QSYS and qmegawizard

• Compile NIOS software (BSP and application)

• Generate components and QIP files

• Compile firmware (analysys, synthesis, assembler)

• Set of MAKE targets for each steps with proper dependencies

(starting from TOP file down to all generated and source files)

• Supports Quartus version from 18.0 to 22.1

# init project and generate IPs

make top.qpf

# NIOS software

make app

# flow

make flow
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Hardware Simulation

• GHDL and Modelsim for simulation with and without GUI

• Wrappers for both to perform simulation with the same options (only

need to specify source VHDL/Verilog files and testbench

parameters/generics)

GHDL - reset/clock-system gen:

(via ./sim.sh *.vhd)

Modelsim - mupix TDAC config:

(via ./vsim.do *.vhd)
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Continuous Integration

• The ability to run wihtout GUI allows to use common CI setups

and perform build after each commit

(limitted by firmware compilation time - up to one hour per sub-project)

• CI pipelines in Jenkins

• Compile firmware for most sub-projects

• Run specific simulations (mupix TDAC config)

• Export status to Bitbucket

• Plan to also use Bitbucket pipelines

(which is used by Mu3e software)
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Continuous Integration

Jenkins pipeline for mupix:

Bitbucket status (per

commit):
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Summary

• All sub-projects use same structure and build scripts that allow to

compile firmware and software on all versions of Quartus Prime software

(which seem to be very unusual, especially in industry)

• Mostly transparent use of IPs

(plan to also adapt to Vivado, e.g. for P2 experiment in Mainz)

• Possible to build on CI build machines ’without’ any GUI requirement

with easy fail/success monitoring

• More tools are still in development

(e.g. show only necessary information in log files)

• All scripts are available at

https://github.com/akozlins/vhdutil/util/quartus/
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Backup

15



Signal

Signal (µ → 3e):

• Decay at rest to two positrons and one electron

• Common vertex & time

• Invariant mass: Me+e+e− = mµ

• Total (missing) momentum:
�

pe = 0

• Require good momentum, vertex and time

resolution

• Tracks with maximum momentum of 53 MeV/c

• Large Multiple Scattering (MS) → minimize

material budget
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Background sources

1st - random combinations:

• Overlap of several µ+
→ e+ + 2ν

and/or e± scattering

• Contribution from fake tracks

• Signature: not same vertex, time, etc. e
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e
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e
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2nd - internal conversion:

• µ+
→ e+e+e− + 2ν

• Signature: missing

momentum & energy
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Detector
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Scintillator tiles

layers

σt < 100 ps

High Voltage Monolithic

Active Pixel Sensors

σt < 1 ns

• Muons stop on target and decay at

rest

• 4 pixel layers provide hits for track

reconstruction

• Two recurl stations to improve

acceptance

• SciTile and SciFi for timing
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