
The build system for the Mu3e DAQ firmware

Alexandr Kozlinskiy, Mainz

Mu3e Experiment

Search for charged Lepton Flavor Violation

• Through a decay µ+
→ e+e+e−

• Allowed in the Standard Model

but not observable (Br < 10−54)

• Any observation will point to New Physics

e+

µ+ e+
νµ νe

W+

e−

Neutrino mixing

γ∗

SM µ+
→ e+e+e−

Current experimental status:

• SINDRUM (1988) Nucl.Phys.B299(1988)1

• Br < 10−12 at 90% C.L.

Mu3e aims for sensitivity of 2 · 10−15 (Phase 1)

• Under construction at Paul Scherrer Institute

using existing beam line (πE5, 108µ/s)

• Further improve to 10−16 (Phase 2) with new

beam line (HIMB)

2

Readout

2844 Pixel Sensors

up to 45

1.25 Gbit/s links

FPGA FPGA FPGA

...

88 FPGAs

One 6 Gbit/s

link each

GPU

PC

GPU

PC

GPU

PC12 PCs

2-8 10 Gbit/s
links per

16 Inputs

each

 3072 Fibre Readout Channels

FPGA FPGA

...

12 FPGAs

 5824 Tiles

FPGA FPGA

...

14 FPGAs

Data

Collection

Server

Mass

Storage

Gbit Ethernet

Switching

Board

Switching

Board
F

ro
n

t-e
n

d

(in
sid

e
 m

a
g

n
e

t)

Switching

Board

Switching

Board

Switching

Board

114 × Front-End Board (Arria V)

readout for pixels, fibres and tiles

lvds to optical links

4 × Switching board (LHCb PCIe40, Arria 10)

merge and sort data streams

Chain of 12 × Receiving board (DE5a NET, Arria 10)

Transfer data to GPU for online reconstruction

• Intel FPGAs: two main (Arria V and Arria 10), one auxilary (MAX 10)

• Three boards (FEB, SWB/PCIe40 and Farm/DE5a)

• Several firmware configurations (mupix/scifi/scitile, DDR3/4, test

stands)

3

Overview

• Several firmwares base on Intel FPGAs

• Many developers and users in different locations

(MZ, HD, ZH, PSI and UK)

• Development in Git (10k commits in 5 years)

(want to avoid generated files to keep repository manageable)

• Use CI (Continuous Integration) to track status of firmwares

(build, simulation)

4

Overview

Firmware compiled with Quartus Prime software:

• Different Quartus versions

• Different Intelectual Property (IP) blocks in different FPGAs (RAM,

transceivers, NIOS, etc.)

• Most actions are done via GUI and are not suitable for CI

• Typycal workflow requires to keep generated IP files in a project (e.g.

1000 files for FEB firmware)

Solution:

• Command line build system:

• Make target for each part of the build process

• Scripts to assemble NIOS and other IPs

(no need to keep generated files)

• Simulation scripts for GHDL and Modelsim

• This system allow to perform all steps (build, etc.) on each commit in CI

5

IP Components

IPs:

• LVDS - connection to pixel sensors

• Optical transceivers - communication between boards

• NIOS CPU - initialization of on board components, monitoring during

development

Problem:

• Different FPGA and sub-projects may need different configuration

or tools (Quartus System Integration QSYS or Quartus Mega Wizard)

• Only specific parameters need adjustment

(difficult to keep track within GUI)

• Quartus produces alot of artifacts

(thousands of vhdl/verilog and other files)

6

IP Components

• Use Quartus TCL scripts to generate and configure components

(LVDS 1250 Mbps, XCVR 10 Gbps and 6250 Mbps, etc.)

• Use QIP files to include generated files and to create project structure

7

Soft CPU - NIOS

• NIOS provides set of components (I2C, SPI, RAM interface, etc.)

that can be controlled from software (C/C++)

• Software uploaded from internal RAM or externaly via JTAG

• NIOS can be configured via QSYS GUI, but difficult to track

configuration for sub-projects

8

Soft CPU - NIOS

• Use base TCL script with common configuration for all sub-projects

• Can specify amount of memory, additional RAM interfaces, etc.

• Mostly same component interface, also generated via command line

base configuration (common for all sub -projects)

source {util/nios_base.tcl}

configure total RAM size

set_instance_parameter_value ram {memorySize} {0 x00010000}

configure SPI lines count

set_instance_parameter_value spi numberOfSlaves 16

SPI lines for FEB SI clock chips

source {fe/nios_spi_si.tcl}

A10 external flash configuration

source {util/flash1616.tcl}

9

Hardware compilation - Flow

• Typical steps for firmware compilation:

• Generate IPs via QSYS and qmegawizard

• Compile NIOS software (BSP and application)

• Generate components and QIP files

• Compile firmware (analysys, synthesis, assembler)

• Set of MAKE targets for each steps with proper dependencies

(starting from TOP file down to all generated and source files)

• Supports Quartus version from 18.0 to 22.1

init project and generate IPs

make top.qpf

NIOS software

make app

flow

make flow

10

Hardware Simulation

• GHDL and Modelsim for simulation with and without GUI

• Wrappers for both to perform simulation with the same options (only

need to specify source VHDL/Verilog files and testbench

parameters/generics)

GHDL - reset/clock-system gen:

(via ./sim.sh *.vhd)

Modelsim - mupix TDAC config:

(via ./vsim.do *.vhd)

11

Continuous Integration

• The ability to run wihtout GUI allows to use common CI setups

and perform build after each commit

(limitted by firmware compilation time - up to one hour per sub-project)

• CI pipelines in Jenkins

• Compile firmware for most sub-projects

• Run specific simulations (mupix TDAC config)

• Export status to Bitbucket

• Plan to also use Bitbucket pipelines

(which is used by Mu3e software)

12

Continuous Integration

Jenkins pipeline for mupix:

Bitbucket status (per

commit):

13

Summary

• All sub-projects use same structure and build scripts that allow to

compile firmware and software on all versions of Quartus Prime software

(which seem to be very unusual, especially in industry)

• Mostly transparent use of IPs

(plan to also adapt to Vivado, e.g. for P2 experiment in Mainz)

• Possible to build on CI build machines ’without’ any GUI requirement

with easy fail/success monitoring

• More tools are still in development

(e.g. show only necessary information in log files)

• All scripts are available at

https://github.com/akozlins/vhdutil/util/quartus/

14

Backup

15

Signal

Signal (µ → 3e):

• Decay at rest to two positrons and one electron

• Common vertex & time

• Invariant mass: Me+e+e− = mµ

• Total (missing) momentum:
�

pe = 0

• Require good momentum, vertex and time

resolution

• Tracks with maximum momentum of 53 MeV/c

• Large Multiple Scattering (MS) → minimize

material budget

e
+

e
+

e
−

16

Background sources

1st - random combinations:

• Overlap of several µ+
→ e+ + 2ν

and/or e± scattering

• Contribution from fake tracks

• Signature: not same vertex, time, etc. e
+

e
+

e
−

2nd - internal conversion:

• µ+
→ e+e+e− + 2ν

• Signature: missing

momentum & energy
e
+

e
+

e
−

νµ

ν̄e

101 102 103 104 105 106

Internal conversion
background

10−18

10−16

10−14

e
+
e
+
e
− mass [MeV/c2]

Signal

17

Detector

Target

µ
+ beam

Scintillating fibres

Inner pixele
+

e
+

e
−

Outer pixel layersRecurl pixel layers

Scintillator tiles

layers

σt < 100 ps

High Voltage Monolithic

Active Pixel Sensors

σt < 1 ns

• Muons stop on target and decay at

rest

• 4 pixel layers provide hits for track

reconstruction

• Two recurl stations to improve

acceptance

• SciTile and SciFi for timing

18

