Gauge-Fixing in EFT Matching Calculations

Anders Eller Thomsen

Based on [2404.11640]

PSI physics seminar PSI, 4 July 2024

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

Direct searches for new physics

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: March 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

- 6	20	fo	ro	n	~~

	Model	ℓ,γ	Jets†	ET	∫£ dt[fb	-1]	Limit			Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH multijet} \\ \text{RS1} G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS} G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WP \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ $	0 e, μ, τ, γ 2 γ - 2 γ multi-channe 1 e, μ 1 e, μ 1 e, μ	1-4j -2j $\geq 3j$ -2j/1J $\geq 1, b, \geq 1, J/2$ $\geq 2, b, \geq 3j$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1 36.1	M _D M _S M _{th} G _{KK} mass G _{KK} mass G _{KK} mass B _{KK} mass KK mass		11.2 Te 8.6 TeV 8.8 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.8 TeV 3.8 TeV	$V = n = 2$ $n = 3 \text{ HLZ NLO}$ $n = 6$ $M_D = 3 \text{ TeV, rot BH}$ $k/M_R = 0.1$ $k/M_R = 1.0$ $k/M_R = 1.0$ $r/m = 15\%$ Tr (1.1, 8.7%) $t \to tt$) = 1	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to t\ell \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tr \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{SSM} \ W' \to t \\ \mathrm{WT} \ W' \to WZ \to \ell\nu qq \ \mathrm{model} \\ \mathrm{HVT} \ W' \to WZ \to \ell\nu \ \ell' \ \mathrm{model} \\ \mathrm{HVT} \ W' \to WH \ \mathrm{model} \\ \mathrm{HSM} \ W_q \to m M_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ \theta \\ 1 \ e, \mu \\ \theta \\ 0 \ e, \mu \\ 2 \mu \end{array}$	- 2b ≥1 b, ≥2 J 2j / 1J 2j (VBF) ≥1 b, ≥2 J	- Yes Yes Yes Yes Yes	139 36.1 39 139 139 139 139 139 139 139 139 139	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass W' mass W' mass	340 GeV	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 5.0 TeV 4.3 TeV 4.3 TeV 3.2 TeV 5.0 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_T = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14638 ATLAS-CONF-2022-005 2007.05293 1904.12679
G	Cl qqqq Cl tl qq Cl eebs Cl µµbs Cl tttt	2 e,µ 2 e 2 µ ≥1 e,µ	2j - 1b 1b ≥1b,≥1j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 TeV 2.57 TeV	21.8 TeV η_{LL}^{-} 35.8 TeV η_{LL}^{-} $g_{-} = 1$ $g_{-} = 1$ $ C_{tc} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DP Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ M) 0 e, μ multi-channe	1 - 4 j 1 - 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{mod} m _{mod} m _{mod}	376 GeV 560 GeV	2.1 TeV 3.1 TeV	$\begin{array}{l} g_{q=0.25,\ g_{\ell}=1,\ m(\chi)=1\ {\rm GeV} \\ g_{q=1,\ g_{\ell}=1,\ m(\chi)=1\ {\rm GeV} \\ \tan\beta=1,\ g_{\ell}=0.8,\ m(\chi)=100\ {\rm GeV} \\ \tan\beta=1,\ g_{k}=1,\ m(\chi)=10\ {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
р	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ 1 \ \tau \end{array}$	≥2j ≥2j ≥2j, ≥2b ≥1j, ≥1b 0-2j, 2b 2b	Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139	LQ mass LQ mass LQ mass LQ mass LQ mass LQ mass LQ mass	1.2 1.24 1. 1.26	1.8 TeV 1.7 TeV TeV TeV 13 TeV 1.77 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(LQ_1^{\nu}\rightarrow br)=1\\ \mathcal{B}(LQ_2^{\nu}\rightarrow tr)=1\\ \mathcal{B}(LQ_2^{\nu}\rightarrow tr)=1\\ \mathcal{B}(LQ_1^{\nu}\rightarrow tr)=1\\ \mathcal{B}(LQ_1^{\nu}\rightarrow br)=1\\ \mathcal{B}(LQ_1^{\nu}\rightarrow br)=0.5, \text{Y-M coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Heavy quarks	$\begin{array}{l} VLQ\; TT \rightarrow Zt + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\; T \rightarrow Ht/Zt \\ VLQ\; T \rightarrow Wb \\ VLQ\; P \rightarrow Wb \\ VLQ\; B \rightarrow Hb \end{array}$	$\begin{array}{c} 2e/2\mu/{\geq}3e,\mu\\ \text{multi-channe}\\ 2(SS)/{\geq}3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu \end{array} $	≥1 b, ≥1 j ≥1 b, ≥1 j ≥1 b, ≥3 j ≥1 b, ≥1 j ≥2b, ≥1 j, ≥1	- Yes Yes J -	139 36.1 36.1 139 36.1 139	T mass B mass T _{5/3} mass T mass Y mass B mass	1 1.3	4 TeV 4 TeV 1.64 TeV 1.85 TeV 1.85 TeV 2.0 TeV	$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ g(T_{5,13} \to Wt) = 1, \ c(T_{5,13}Wt) = 1 \\ SU(2) \ singlet, \ \kappa_T = 0.5 \\ g(Y \to Wb) = 1, \ c_8(Wb) = 1 \\ SU(2) \ doublet, \ \kappa_B = 0.3 \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	1γ 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q" mass q" mass b" mass (" mass y" mass		6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^{*} and $d^{*}, \Lambda = m(q^{*})$ only u^{*} and $d^{*}, \Lambda = m(q^{*})$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{++} \rightarrow W^{+}W^{+}$ Higgs triplet $H^{++} \rightarrow \ell \ell$ Higgs triplet $H^{++} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2 µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS 3 e, µ, τ -	≥2 j 2 j) various) - - -	Yes - Yes - - -	139 36.1 139 139 20.3 36.1 34.4	N ⁰ mass N _R mass H ⁺⁺ mass H ⁺⁺ mass H ⁺⁺ mass multi-charged monopole ma	910 GeV 350 GeV 1.08 Te 400 GeV 1 particle mass 55	3.2 TeV V TeV 2.37 TeV	$\begin{array}{l} m(W_R)=4.1 \text{ TeV}, g_L=g_R\\ DY \text{ production}\\ DY \text{ production}\\ DY \text{ production}, g(t_{L^+}^{++}\rightarrow\ell\tau)=1\\ DY \text{ production}, g =5e\\ DY \text{ production}, g =1g_D, \text{ spin }1/2 \end{array}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 1812.03673 1905.10130
	$\sqrt{s} = 8 \text{ TeV}$	artial data	full d	ata		10	D-1	1 1	Mass scale [TeV]	

Anders Eller Thomsen (U. Bern)

Direct searches for new physics

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: March 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Anders Eller Thomsen (U. Bern)

1

Effective field theory

High-energy physics manifests as contact interactions in EFTs

Effective field theory

High-energy physics manifests as contact interactions in EFTs

Effective field theory

High-energy physics manifests as contact interactions in EFTs

The repetitive nature of EFT computations call for automated tools!

The repetitive nature of EFT computations call for automated tools!

The repetitive nature of EFT computations call for automated tools!

$$\begin{array}{ll} \text{Given} & \mathcal{L}_{\text{UV}}[\Phi,\phi] = \mathcal{L}_{\text{kin}}[\Phi,\phi] + \sum_{a} g_{a} Q_{a}[\Phi,\phi] & M_{\Phi} \sim \Lambda \gg m_{\phi} \\ & & \\ & \\ \text{Heavy fields} & \\ & \\ \text{determine} & \mathcal{L}_{\text{EFT}}[\phi] = \mathcal{L}_{\text{kin}}[\phi] + \sum_{k} C_{k}(g) \, \mathcal{O}_{k}[\phi] \\ \end{array}$$

On-shell EFT matching

Weak (physical) matching condition

$$\langle f | S_{\text{mat.}}^{\text{EFT}} | i \rangle = \langle f | S_{\text{mat.}}^{\text{UV}} | i \rangle_{+\mathcal{O}(\Lambda^{-n}, (16\pi^2)^{-\ell})}, \quad \forall i, f \in \{\text{low energy}\}$$

Given

$$\mathcal{L}_{UV}[\Phi, \phi] = \mathcal{L}_{kin}[\Phi, \phi] + \sum_{a} g_{a} Q_{a}[\Phi, \phi] \qquad M_{\Phi} \sim \Lambda \gg m_{\phi}$$
Heavy fields
determine

$$\mathcal{L}_{EFT}[\phi] = \mathcal{L}_{kin}[\phi] + \sum_{k} C_{k}(g) \mathcal{O}_{k}[\phi]$$

- Physical condition (works whenever decoupling is possible)
- Multiple solutions for $C_k(g)$: it is surprisingly difficult to determine an EFT basis
- Challenging to compute on-shell matrix element!

4

Strong matching condition

$$\mathcal{W}_{ ext{eft}}[J_{\phi}] = \mathcal{W}_{ ext{uv}}[J_{\Phi} = 0, \; J_{\phi}]$$

*The vacuum functional ${\mathcal W}$ generates all connected Green's functions

- Unphysical matching condition (it is stronger than needed)
- Strong matching condition \implies weak condition
- Non-trivial that a solution exists: Green's functions depend on gauge choice

Off-shell matching

Strong matching condition (equivalent)

$$\Gamma_{\text{EFT}}[\hat{\phi}] = \Gamma_{\text{UV}}[\hat{\Phi}[\hat{\phi}], \ \hat{\phi}], \qquad 0 = \frac{\delta\Gamma_{\text{UV}}}{\delta\Phi}[\hat{\Phi}[\hat{\phi}], \ \hat{\phi}]$$

*The quantum effective action Γ generates all 1PI Green's functions

- Reduced number of diagrams
- We may directly solve for $S_{EFT} \subset \Gamma_{EFT}$

Off-shell matching

Strong matching condition (equivalent)

$$\Gamma_{\text{eft}}[\hat{\phi}] = \Gamma_{\text{uv}}[\hat{\Phi}[\hat{\phi}], \ \hat{\phi}], \qquad 0 = \frac{\delta\Gamma_{\text{uv}}}{\delta\Phi}[\hat{\Phi}[\hat{\phi}], \ \hat{\phi}]$$

*The quantum effective action Γ generates all 1PI Green's functions

- Reduced number of diagrams
- We may directly solve for $S_{EFT} \subset \Gamma_{EFT}$

At tree-level we may integrate out the heavy fields with their EOM solution

$$S_{\text{EFT}}^{(0)}[\phi] = S_{\text{UV}} \Big[\widehat{\Phi}[\phi], \phi \Big], \qquad \frac{\delta S_{\text{UV}}}{\delta \Phi} \Big[\widehat{\Phi}[\phi], \phi \Big] = 0$$

Off-shell matching

Strong matching condition (equivalent)

$$\Gamma_{\text{eft}}[\hat{\phi}] = \Gamma_{\text{uv}}[\widehat{\Phi}[\hat{\phi}], \ \hat{\phi}], \qquad 0 = \frac{\delta\Gamma_{\text{uv}}}{\delta\Phi}[\widehat{\Phi}[\hat{\phi}], \ \hat{\phi}]$$

*The quantum effective action Γ generates all 1PI Green's functions

- Reduced number of diagrams
- We may directly solve for $S_{EFT} \subset \Gamma_{EFT}$

At tree-level we may integrate out the heavy fields with their EOM solution

$$S_{\text{EFT}}^{(0)}[\phi] = S_{\text{uv}} \Big[\widehat{\Phi}[\phi], \phi \Big], \qquad \frac{\delta S_{\text{uv}}}{\delta \Phi} \Big[\widehat{\Phi}[\phi], \phi \Big] = 0$$

What about loop-level matching?

Anders Eller Thomsen (U. Bern)

Separation of scales

Decomposition of UV loops:

Separation of scales

Decomposition of UV loops:

Hard-region matching formula

$$S_{\text{EFT}}[\phi] = \Gamma_{\text{UV}}[\widehat{\Phi}, \phi] \Big|_{\text{hard}}, \qquad \frac{\partial \Gamma_{\text{UV}}}{\delta \Phi}$$

$$\frac{1}{\delta \Phi} [\widehat{\Phi}, \phi] = 0$$

"hard" denotes the part without *any* soft loop momenta (it includes all tree-level contributions) Fuentes-Martin, Palavrić, AET [2311.13630]

*Generalization of Fuentes-Martin et al. [1607.02142]; Zhang [1610.00710]

Anders Eller Thomsen (U. Bern)

Gauge-Fixing in EFT Matching

۲

Consider a gauge theory with gauge group G

$$S_{\scriptscriptstyle {
m UV}}[\eta_g] = S_{\scriptscriptstyle {
m UV}}[\eta], \qquad orall g \in G$$

With no Higgs-mechanism, we are looking for a low-energy EFT action with the same symmetry

$$S_{ ext{eft}}[\phi_g] = S_{ ext{eft}}[\phi], \qquad orall g \in G$$

Consider a gauge theory with gauge group G

$$S_{\scriptscriptstyle m UV}[\eta_g] = S_{\scriptscriptstyle m UV}[\eta], \qquad orall g \in G$$

With no Higgs-mechanism, we are looking for a low-energy EFT action with the same symmetry

$$S_{\text{eft}}[\phi_g] = S_{\text{eft}}[\phi], \qquad \forall g \in G$$

What about the hard-region matching formula?

$$S_{\text{EFT}}[\phi] \stackrel{\text{PRST invariant?}}{\Gamma_{\text{UV}}[\hat{\eta}]}\Big|_{\text{hard}}, \qquad \frac{\delta\Gamma_{\text{UV}}|_{\text{hard}}}{\delta\Phi}[\hat{\eta}] = 0$$

 Γ_{UV} loses G invariance for the smaller BRST invariance with ordinary gauge-fixing

Background field gauge

Background field method: \neq background field gauge

$$\Gamma[\overline{A}] = -i \log \int \mathcal{D}A \mathcal{D}\omega \exp\left[i \left(S[A + \overline{A}] + S_{\text{fix}}^{G}[A + \overline{A}, \omega, \Theta] + \int_{X} J_{A}^{\mu} A_{\mu}^{A}\right)\right]$$

Generalization of the R_{ξ} gauges:

$$S_{\text{fix}}^{G}[A, \omega, \Theta] = -\int_{x} \left(\frac{1}{2\xi} \left[F_{\mu B}^{A}[\Theta](A - \Theta)_{\mu}^{B} \right]^{2} + \overline{\omega}_{A} F_{\mu B}^{A}[\Theta] D^{\mu}[A] \omega^{B} \right)$$
$$F_{\mu B}^{A}[\Theta] = \delta^{A}{}_{B} \partial_{\mu} + f^{A}{}_{CB} \Theta_{\mu}^{C}$$

Background field gauge

Background field method: \neq background field gauge

$$\Gamma[\overline{A}] = -i \log \int \mathcal{D}A \mathcal{D}\omega \exp \left[i \left(S[A + \overline{A}] + S_{\text{fix}}^G[A + \overline{A}, \omega, \Theta] + \int_x J^{\mu}_A A^A_{\mu} \right) \right]$$

Generalization of the R_{ξ} gauges:

$$S_{\text{fix}}^{G}[A, \boldsymbol{\omega}, \boldsymbol{\Theta}] = -\int_{x} \left(\frac{1}{2\xi} \left[F_{\mu B}^{A}[\boldsymbol{\Theta}](A - \boldsymbol{\Theta})_{\mu}^{B} \right]^{2} + \overline{\omega}_{A} F_{\mu B}^{A}[\boldsymbol{\Theta}] D^{\mu}[A] \omega^{B} \right)$$

$$F^{A}_{\mu B}[\Theta] = \delta^{A}{}_{B}\partial_{\mu} + f^{A}{}_{CB}\Theta^{C}_{\mu}$$

Background field gauge: it is more than a mere gauge

$$S_{\text{fix}}^{G}[A + \overline{A}, \boldsymbol{\omega}, \overline{A}] = -\int_{x} \left(\frac{1}{2\xi} \left[D_{\mu}[\overline{A}] A_{\mu}^{A} \right]^{2} + \overline{\omega}_{A} D_{\mu}[\overline{A}] D^{\mu}[A + \overline{A}] \omega^{B} \right)$$

bkg. *G* invariance: $\overline{\delta}_{\alpha}\overline{A}^{A}_{\mu} = D_{\mu}[\overline{A}]\alpha^{A}$, $\overline{\delta}_{\alpha}A^{A}_{\mu} = -f^{A}_{BC}\alpha^{B}A^{C}_{\mu}$

Gauge-invariant effective action

Gauge-invariant effective action of the background field (BF) gauge

$$\overline{\Gamma}[\overline{\eta}] = -i \log \int \mathcal{D}\eta \, \mathcal{D}\omega \exp \left[i \left(S[\eta + \overline{\eta}] + S_{\text{fix}}^{G}[\eta + \overline{\eta}, \, \omega, \, \overline{\eta}] + \int_{x} J_{l} \eta^{l} \right) \right]$$

Gauge-invariant effective action

Gauge-invariant effective action of the background field (BF) gauge

$$\overline{\Gamma}[\overline{\eta}] = -i \log \int \mathcal{D}\eta \, \mathcal{D}\omega^{\text{(anti-)ghosts}} \exp \left[i \left(S[\eta + \overline{\eta}] + S_{\text{fix}}^{G}[\eta + \overline{\eta}, \, \omega, \, \overline{\eta}] + \int_{x} J_{l} \eta^{l} \right) \right]$$

Gauge-invariant effective action

Gauge-invariant effective action of the **background field (BF) gauge** $\overline{\Gamma}[\overline{\eta}] = -i \log \int \mathcal{D}\eta \ \mathcal{D}\omega \ \exp\left[i \left(S[\eta + \overline{\eta}] + S_{\text{fix}}^{G}[\eta + \overline{\eta}, \omega, \overline{\eta}] + \int_{x} J_{l}\eta^{l}\right)\right]$

Abbott et al. '83; Hart '83; Rebhan, Wirthumer '84

Vacuum functional is constructed with gauge-fixed bkg. fields:

$$\mathcal{W}_{\rm BF}[\overline{J}] = \Gamma_{\rm BF}[\overline{\eta}] + \int_{\times} \overline{J}_I \overline{\eta}^I, \qquad \overline{J}_I = -\frac{\delta \Gamma_{\rm BF}[\overline{\eta}]}{\delta \overline{\eta}^I},$$

 $\Gamma_{\scriptscriptstyle \mathsf{BF}} \xrightarrow{\mathsf{Legendre trans.}} \mathcal{W}_{\scriptscriptstyle \mathsf{BF}} \xrightarrow{\mathsf{on-shell}} S\text{-matrix}$

Anders Eller Thomsen (U. Bern)

Matching in an ordinary BF gauge

A version of the strong matching condition is

$$\Gamma_{\rm BF}^{\rm EFT}[\overline{\phi}] = \Gamma_{\rm BF}^{\rm UV}[\overline{\eta}], \qquad \frac{\delta \Gamma_{\rm BF}^{\rm UV}}{\delta \Phi}[\overline{\eta}] = 0$$

Matching in an ordinary BF gauge

A version of the strong matching condition is

$$\Gamma_{\rm BF}^{\rm EFT}[\overline{\phi}] = \Gamma_{\rm BF}^{\rm UV}[\overline{\eta}], \qquad \frac{\delta \Gamma_{\rm BF}^{\rm UV}}{\delta \Phi}[\overline{\eta}] = 0$$

Choosing identical $S^{G}_{bkg.}[\overline{\phi}]$ for UV and EFT yields

$$\overline{\Gamma}_{\text{EFT}}[\overline{\phi}] = \overline{\Gamma}_{\text{UV}}[\overline{\eta}], \qquad \frac{\delta \overline{\Gamma}_{\text{UV}}}{\delta \Phi}[\overline{\eta}] = 0$$

Matching in an ordinary BF gauge

A version of the strong matching condition is

$$\Gamma_{\rm BF}^{\rm EFT}[\overline{\phi}] = \Gamma_{\rm BF}^{\rm UV}[\overline{\eta}], \qquad \frac{\partial \Gamma_{\rm BF}^{\rm UV}}{\delta \Phi}[\overline{\eta}] = 0$$

Choosing identical $S^G_{\mathrm{bkg.}}[\overline{\phi}]$ for UV and EFT yields

$$=_{_{\mathsf{EFT}}} [\overline{\phi}] = \overline{\Gamma}_{\mathsf{UV}} [\overline{\eta}], \qquad \frac{\delta \overline{\Gamma}_{_{\mathsf{UV}}} S_{_{\mathsf{bkg.}}}^{\mathsf{s}} \text{ is } \Phi \text{ independent}}{\delta \Phi}$$

Quantum gauge-fixing can also be chosen identically for UV and EFT: we can demonstrate a 1:1 correspondence of soft-region loops

Hard-region matching in unbroken gauge theories

$$S_{\text{EFT}}[\overline{\phi}] = \overline{\Gamma}_{\text{UV}}[\overline{\eta}]|_{\text{hard}}, \qquad \frac{\delta \overline{\Gamma}_{\text{UV}}|_{\text{hard}}}{\delta \Phi}[\overline{\eta}] = 0$$
AET [2404.11640]

See also Henning, Lu, Murayama [1412.1837]; Fuentes-Martin, Portoles, Ruiz-Femenia [1607.02142]

- Many BSM scenarios involve spontaneously broken gauge symmetries
- Popular patterns include
 - SU(4) × SU(2)_L × SU(2)_R \longrightarrow G_{SM}
 - $\ \mathsf{SU}(4) \times \mathsf{SU}(3) \times \mathsf{SU}(2)_L \times \mathsf{U}(1) \longrightarrow \mathcal{G}_{\mathsf{SM}}$

$$-$$
 SU(5), SO(10) $\longrightarrow G_{SM}$

- $\ SU(2)_{12} \times SU(2)_3 \longrightarrow SU(2)_L$
- $SU(2)_L \times U(1)_Y \longrightarrow U(1)_{em}$
- Generically, the gauge group G is broken to a smaller group H in the IR
- Matching must accommodate the reduction in symmetry

Spontaneous symmetry breaking

A scalar VEV breaks $G \rightarrow H$:

$$\langle arphi'^a
angle = v^a
eq 0, \qquad arphi'^a \subset \eta'$$

The G-covariant derivative decomposes as

$$D_{\mu} = d_{\mu} - i V^{i}_{\mu} x_{i}, \qquad d_{\mu} = \partial_{\mu} - i B^{\alpha}_{\mu} t_{\alpha}$$
Massive gauge bosons

and the scalars as

$$\varphi'^{a} = v^{a} + \varphi^{a}, \qquad \varphi^{a} = \varphi^{a}_{h} + \chi^{i} M_{i}^{-1} f_{i}^{a}$$

"Higgs" fields

All types may contain multiple irreducible representations of *H*

Spontaneous symmetry breaking

A scalar VEV breaks $G \rightarrow H$:

$$\langle arphi'^a
angle = v^a
eq 0, \qquad arphi'^a \subset \eta'$$

The G-covariant derivative decomposes as

$$D_{\mu} = d_{\mu} - i V^{i}_{\mu} x_{i}, \qquad d_{\mu} = \partial_{\mu} - i B^{\alpha}_{\mu} t_{\alpha}$$

Massive gauge bosons

and the scalars as

$$\varphi'^{a} = v^{a} + \varphi^{a}, \qquad \varphi^{a} = \varphi_{h}^{a} + \chi^{i} M_{i}^{-1} f_{i}^{a}$$

"Higgs" fields

All types may contain multiple irreducible representations of *H*

The scalar kinetic term gives masses to the V^i_μ gauge bosons:

$$\begin{split} \frac{1}{2}D_{\mu}(\varphi'^{a})^{2} &= \frac{1}{2}d_{\mu}\varphi_{h}^{a}h_{ab}d^{\mu}\varphi_{h}^{b} + \frac{1}{2}d_{\mu}\chi_{i}d^{\mu}\chi^{i} + \frac{1}{2}M_{i}^{2}V_{i}^{\mu}V_{\mu}^{i} + d^{\mu}\chi_{i}M_{i}V_{\mu}^{i} \\ &+ \frac{1}{2}iV_{\mu}^{i}(\varphi_{a}x_{ib}^{a}d^{\overleftarrow{\mu}}\varphi^{b}) + \frac{1}{2}V_{\mu}^{i}V^{j\mu}\varphi_{a}(x_{i}x_{j}\varphi)^{a} - iV_{\mu}^{i}V^{j\mu}f_{ia}x_{jb}^{a}\varphi^{b} \end{split}$$

And much more algebra ...

Background field gauge

The gauge-fixing terms in ordinary BF gauge for $G \rightarrow H$ gauge theories

$$\begin{split} \mathcal{L}^{G}_{\text{Vec.}} &= -\frac{1}{2\xi} \tilde{s}^{2}_{\alpha\beta} \overline{\mathcal{G}}^{\mu} \mathcal{B}^{\mu}_{\mu} \overline{\mathcal{G}}^{\nu} \mathcal{B}^{\nu}_{\nu} - \frac{1}{2\xi} \overline{\mathcal{G}}^{\mu} \mathcal{V}^{\mu}_{\mu} \overline{\mathcal{G}}_{\nu} \mathcal{V}^{\nu}_{\nu} + \mathcal{H}_{\lambda} \chi^{j} \overline{\mathcal{G}}^{\mu} \mathcal{V}^{\mu}_{\mu} - \frac{1}{\xi} \overline{\mathcal{G}}^{\mu} \mathcal{B}^{\mu}_{\alpha\beta} \overline{\mathcal{G}}^{\alpha}_{\alpha\beta} \overline{\mathcal{G}}^{\beta}_{\beta} | \overline{\mathcal{V}}^{\nu}_{\nu} \mathcal{V}^{\mu} \mathcal{V}^{\mu}_{\mu} + \overline{\mathcal{G}}^{\mu}_{ij} \overline{\mathcal{V}}^{\mu}_{\mu} \mathcal{V}^{\mu}_{\mu} \right) (\chi_{k} t^{k} \alpha_{\ell} \overline{\chi}^{\ell} - i\varphi_{h} s^{k} a_{b} \overline{\varphi}^{h}_{h}) \\ &- \frac{1}{2\xi} \overline{\mathcal{G}}^{\alpha\beta} (\chi_{i} t^{i} \alpha_{j} \overline{\chi}^{j} - i\varphi_{h} a^{k} a_{b} \overline{\varphi}^{h}_{h}) (\chi_{k} t^{k} \beta_{\ell} \overline{\chi}^{\ell} - i\varphi_{h} c^{k} \overline{\mathcal{G}}^{d}_{\sigma} \overline{\varphi}^{h}_{h}) - \frac{1}{\xi} \overline{\mathcal{G}}^{\mu} \overline{\mathcal{V}}^{\nu}_{\mu} (f_{ij\alpha} \mathcal{B}^{\alpha\mu} + f_{ijk} \mathcal{V}^{k\mu}) (t^{i} \ell_{\beta} \mathcal{B}^{\beta\nu} + t^{i} \ell_{m} \mathcal{V}^{m\nu}) + \frac{\xi}{2} (\varphi_{a} x^{i}_{b} \overline{\varphi}^{b}) \overline{\mathcal{K}}^{i}_{i} (\varphi_{c} x^{c}_{j} \overline{\mathcal{G}}^{d}) \\ &+ (\mathcal{H}_{i} \chi_{i} - i\varphi_{a} x^{i}_{b} \overline{\varphi}^{b}) \overline{\mathcal{V}}^{i}_{\mu} (t^{i}_{j\alpha} \mathcal{B}^{\alpha\mu} + t^{i}_{jk} \mathcal{V}^{k\mu}) - i\overline{\mathcal{G}}^{\mu} \mathcal{V}^{i}_{\mu} \varphi_{a} x^{i}_{b} \overline{\varphi}^{b} + i\xi_{i} \chi^{i} \varphi_{a} x^{i}_{b} \overline{\varphi}^{b}. \end{split}$$

$$\mathcal{L}^{G}_{gh.} = -\overline{c} \alpha^{2} c^{2} c^{\alpha} - \overline{u}_{i} \overline{\mathcal{G}}^{2}_{i} + \overline{\mathcal{G}}^{\mu} \alpha_{\beta} \gamma_{\beta} \mathcal{B}^{\mu}_{\mu} c^{i}_{i} + \overline{d}^{\mu} \overline{u}_{i} t^{i} \alpha_{j} \mathcal{B}^{\mu}_{\mu} u^{i}_{i} - \overline{u}_{i} \overline{\mathcal{V}}^{i}_{i} \theta_{a} u^{i}_{i}} \\ &+ \overline{\mathcal{G}}^{\mu} \overline{u}_{i} (\overline{\mathcal{V}}^{j}_{\mu} + \mathcal{V}^{j}_{\mu}) (t^{i}_{j\alpha} c^{\alpha} + t^{i}_{jk} u^{k}) - \overline{c} \alpha^{\alpha} \alpha_{i} \gamma_{i} \overline{\mathcal{V}}^{i}_{\mu} \overline{\mathcal{G}}^{\mu}_{i} - \overline{\alpha}^{\alpha} \alpha_{i} \overline{\mathcal{I}} (\overline{\mathcal{V}}^{j}_{\mu} + \mathcal{V}^{j}_{\mu}) u^{i}_{i} \\ &+ \overline{c} \alpha^{\alpha} \overline{\alpha}^{i}_{j} \overline{\mathcal{I}}^{i}_{\alpha} \overline{\chi}^{i}_{\mu} \overline{\varphi}^{i}_{\mu} - \overline{c} \alpha^{\alpha} \alpha_{\beta} \gamma_{i} \overline{\mathcal{G}}^{i}_{\mu} \varphi_{i} \gamma_{i} + t^{i}_{jk} \overline{\mathcal{G}}^{i}_{\mu} \varphi_{i} \gamma_{i} \gamma_{i} \overline{\mathcal{G}}^{i}_{\mu} \varphi_{i} \gamma_{i} \gamma_{i} \overline{\mathcal{G}}^{i}_{\mu} \varphi_{i} \gamma_{i} \gamma$$

quantum : B^{α}_{μ} , V^{i}_{μ} , φ^{a}_{h} , χ^{i} background : $\overline{B}^{\alpha}_{\mu}$, \overline{V}^{i}_{μ} , $\overline{\varphi}^{a}_{h}$, $\overline{\chi}^{i}$

Anders Eller Thomsen (U. Bern)

Matching a spontaneously broken (Higgsed) gauge theory $(G \rightarrow H)$

$$S_{UV}[\eta_g] = S_{UV}[\eta], \qquad \forall g \in G$$
$$S_{EFT}[\phi_h] = S_{EFT}[\phi], \qquad \forall h \in H \subseteq G$$

What happens to matching with the BF gauge?

$$S_{\text{EFT}}[\phi] \stackrel{?}{=} \overline{\Gamma}_{\text{UV}}[\overline{\eta}] \Big|_{\text{hard}}$$

$$\frac{\delta\overline{\Gamma}_{\scriptscriptstyle UV}|_{\sf hard}}{\delta\Phi}[\overline{\eta}]=0$$

What happens to matching with the BF gauge?

$$S_{\text{EFT}}[\phi] \stackrel{\text{2}}{=} \overline{\Gamma}_{\text{UV}}[\overline{\eta}]|_{\text{hard}} \stackrel{\text{2}}{+} S_{\text{bkg.}}^{G/H}[\overline{\eta}], \qquad \frac{\delta\Gamma_{\text{BF}}^{\text{UV}}|_{\text{hard}}}{\delta\Phi}[\overline{\eta}] = 0$$

What happens to matching with the BF gauge?

$$S_{\text{EFT}}[\phi] \stackrel{?}{=} \overline{\Gamma}_{\text{UV}}[\overline{\eta}]\Big|_{\text{hard}} \stackrel{?}{=} S_{\text{bkg.}}^{G/H}[\overline{\eta}], \qquad \frac{\delta\Gamma_{\text{BF}}^{\text{UV}}|_{\text{hard}}}{\delta\Phi}[\overline{\eta}] = 0$$

What about the 1:1 correspondence between soft UV and EFT loops?

What happens to matching with the BF gauge?

$$S_{\text{EFT}}[\phi] \stackrel{?}{=} \overline{\Gamma}_{\text{UV}}[\overline{\eta}]\Big|_{\text{hard}} \stackrel{?}{=} S_{\text{bkg.}}^{G/H}[\overline{\eta}], \qquad \frac{\delta\Gamma_{\text{BF}}^{\text{UV}}|_{\text{hard}}}{\delta\Phi}[\overline{\eta}] = 0$$

What about the 1:1 correspondence between soft UV and EFT loops?

A 1:1 cancellation would depend intricately on S_{fix}^H (EFT), S_{fix}^G (UV), and $S_{\text{bka}}^{G/H}$

What happens to matching with the BF gauge?

$$S_{\text{EFT}}[\phi] \stackrel{?}{=} \overline{\Gamma}_{\text{UV}}[\overline{\eta}]\Big|_{\text{hard}} \stackrel{?}{=} S_{\text{bkg.}}^{G/H}[\overline{\eta}], \qquad \frac{\delta\Gamma_{\text{BF}}^{\text{UV}}|_{\text{hard}}}{\delta\Phi}[\overline{\eta}] = 0$$

What about the 1:1 correspondence between soft UV and EFT loops?

A 1:1 cancellation would depend intricately on S_{fix}^H (EFT), S_{fix}^G (UV), and $S_{\text{bka}}^{G/H}$

Partial gauge fixing

Gauge-fixing a la Faddeev–Popov

$$Z = \int \mathcal{D}\eta \, e^{iS[\eta]} = \int \mathcal{D}\eta \, \delta\big(\mathcal{G}^{A}[\eta]\big) \, \mathsf{Det}\big(\mathcal{G}^{A}_{,I}[\eta]\mathcal{D}^{I}_{B}[\eta]\big) e^{iS[\eta]}$$

Partial gauge fixing

Gauge-fixing a la Faddeev–Popov

$$Z = \int \mathcal{D}\eta \, e^{iS[\eta]} = \int \mathcal{D}\eta \, \delta\big(\mathcal{G}^{A}[\eta]\big) \, \mathsf{Det}\big(\mathcal{G}^{A}_{,I}[\eta]\mathcal{D}^{I}_{B}[\eta]\big) e^{iS[\eta]}$$

Factorization of the gauge-fixing condition:

Weinberg '80

$$G \to H, \qquad A^{A}_{\mu} = (B^{\alpha}_{\mu}, V^{i}_{\mu}), \qquad \mathcal{G}^{A}[\eta] = (\mathcal{G}^{\alpha}[\eta], \mathcal{G}^{i}[\eta])$$

$$Z = \int \mathcal{D}\eta \,\delta\big(\mathcal{G}^{\alpha}[\eta]\big)\delta\big(\mathcal{G}^{i}[\eta]\big) \operatorname{Det}\begin{pmatrix} \mathcal{G}^{\alpha}_{,\,l}[\eta]\mathcal{D}^{\prime}_{\,\beta}[\eta] & \mathcal{G}^{\alpha}_{,\,l}[\eta]\mathcal{D}^{\prime}_{\,j}[\eta] \\ -\mathcal{F}^{i}_{\beta k}\mathcal{G}^{k}_{,\,\mathbf{0}} & \mathcal{G}^{i}_{,\,l}[\eta]\mathcal{D}^{\prime}_{\,j}[\eta] \end{pmatrix} e^{iS[\eta]}$$

Partial gauge fixing

Gauge-fixing a la Faddeev-Popov

$$Z = \int \mathcal{D}\eta \, e^{iS[\eta]} = \int \mathcal{D}\eta \, \delta\big(\mathcal{G}^{A}[\eta]\big) \, \mathsf{Det}\big(\mathcal{G}^{A}_{,I}[\eta]\mathcal{D}^{I}_{B}[\eta]\big) e^{iS[\eta]}$$

Factorization of the gauge-fixing condition:

Weinberg '80

$$G \to H, \qquad A^A_\mu = (B^\alpha_\mu, V^i_\mu), \qquad \mathcal{G}^A[\eta] = \left(\mathcal{G}^\alpha[\eta], \mathcal{G}^i[\eta]\right)_{H\text{-covariant}}$$

$$Z = \int \mathcal{D}\eta \,\delta\big(\mathcal{G}^{\alpha}[\eta]\big)\delta\big(\mathcal{G}^{i}[\eta]\big) \operatorname{Det}\begin{pmatrix} \mathcal{G}^{\alpha}_{,I}[\eta]\mathcal{D}^{I}_{\beta}[\eta] & \mathcal{G}^{\alpha}_{,I}[\eta]\mathcal{D}^{I}_{J}[\eta] \\ -\mathcal{F}^{i}_{\beta k}\mathcal{G}^{k}_{,\mathbf{0}} & \mathcal{G}^{i}_{,I}[\eta]\mathcal{D}^{I}_{J}[\eta] \end{pmatrix} e^{iS[\eta]}$$

Clever manipulations and the introduction of an auxiliary field yields

$$Z = \int \mathcal{D}\eta \mathcal{D}\mathbf{u} \underbrace{\delta(\mathcal{G}^{\alpha}[\eta]) \operatorname{Det}(\mathcal{G}^{\alpha}_{,I}[\eta]\mathcal{D}^{I}_{\beta}[\eta])}_{H \text{ gauge-fixing}} \exp\left[i\left(\underbrace{S[\eta] + S^{G/H}_{\text{fix}}[\eta, \mathbf{u}]}_{H\text{-inv.}}\right)\right]_{H\text{-inv.}}$$

where

$$S_{\text{fix}}^{G/H}[\boldsymbol{\eta}, \mathbf{u}] = -\int_{\boldsymbol{\chi}} \left(\frac{1}{2\zeta} \mathcal{G}_{i}[\boldsymbol{\eta}] \mathcal{G}^{i}[\boldsymbol{\eta}] + \overline{u}_{i} \left(\mathcal{G}^{i}_{,i}[\boldsymbol{\eta}] D^{i}_{j}[\boldsymbol{\eta}] + f^{i}_{jk} \mathcal{G}^{k}[\boldsymbol{\eta}] \right) u^{j} - \frac{\zeta}{2} \hat{a}^{\alpha\beta} f^{i}_{j\alpha} f^{k}_{\ell\beta} \overline{u}_{i} u^{j} \overline{u}_{k} u^{\ell} \right)$$

Anders Eller Thomsen (U. Bern)

Partially fixed BF gauge

Proposal: Combine the partial fixing of
$$G/H$$
 with a BF gauge for H
 $\overline{\Gamma}[\overline{\eta}] = -i \log \int \mathcal{D}\eta \, \mathcal{D}\mathbf{c} \, \mathcal{D}\mathbf{u} \, \exp\left[i\left(S[\eta+\overline{\eta}]+S_{\text{fix}}^{G/H}[\eta+\overline{\eta},\,\mathbf{u}]+S_{\text{fix}}^{H}[\eta+\overline{\eta},\,\mathbf{c},\,\overline{\eta}]+\int_{x}J_{l}\eta^{l}\right)\right]$

with the BF effective action

$$\Gamma_{\rm \tiny BF}[\overline{\eta}] = \overline{\Gamma}[\overline{\eta}] + S^{H}_{\rm \scriptsize bg.}[\overline{\eta}]$$

 $\overline{\Gamma}_{UV}$ of the partially fixed BF gauge possesses the symmetries of S_{EFT} !

Partially fixed BF gauge

Proposal: Combine the partial fixing of
$$G/H$$
 with a BF gauge for H
 $\overline{\Gamma}[\overline{\eta}] = -i \log \int \mathcal{D}\eta \, \mathcal{D}\mathbf{c} \, \mathcal{D}\mathbf{u} \, \exp\left[i\left(S[\eta+\overline{\eta}]+S_{\text{fix}}^{G/H}[\eta+\overline{\eta},\,\mathbf{u}]+S_{\text{fix}}^{H}[\eta+\overline{\eta},\,\mathbf{c},\,\overline{\eta}]+\int_{x}J_{l}\eta^{l}\right)\right]$

with the BF effective action

$$\Gamma_{\rm \tiny BF}[\overline{\eta}] = \overline{\Gamma}[\overline{\eta}] + S^{H}_{\rm \scriptsize bg.}[\overline{\eta}]$$

 $\overline{\Gamma}_{UV}$ of the partially fixed BF gauge possesses the symmetries of S_{EFT} ! The gauge-fixing terms of the PFBF gauge are more "manageable:"

$$\mathcal{L}^{G/H}_{\text{vec.}} = -\frac{1}{2\zeta} (d_{\mu} V^{\mu}_i) (d^{\nu} V^i_{\nu}) + M_i \chi_i d^{\mu} V^i_{\mu} - \frac{\zeta}{2} M^2_i \chi_i \chi^i,$$

$$\begin{split} \mathcal{L}_{\text{gh.}}^{G/H} &= -\overline{u}_i (d^2 + \zeta M_i^2) u^i + \overline{u}_i (r^i{}_{jk} \vee_{\mu}^k d^\mu + r^i{}_{k\alpha} r^\alpha \ell_j v^{k\mu} \vee_{\mu}^\ell) u^j + \langle \overline{u}_i (ir^i{}_{\vartheta} x_{jb}^2 \varphi^b + r^i{}_{jk} M_k \chi^k) u^j + \frac{\zeta}{2} \vartheta^{\alpha\beta} r^i{}_{j\alpha} r^k \ell_{\beta} \overline{u}_i u^j \overline{u}_k u^\ell, \\ \mathcal{L}_{\text{vec.}}^H &= -\frac{1}{2\epsilon} \vartheta^{-1}_{\alpha\beta} \overline{u}^\mu B^\alpha_\mu \overline{u}^\nu B^\beta_\nu, \qquad \mathcal{L}_{\text{gh.}}^H = -\overline{c} \alpha \overline{d}^\mu (\overline{d}_\mu c^\alpha + r^\alpha_\beta \gamma B^\beta_\mu c^\gamma) \end{split}$$

Matching with the PFBF gauge

Massive ghosts of the PFBF gauge don't need to be mimicked by any EFT loops

$$\overline{\Gamma}_{UV} \supset \mathsf{Det}\big(\mathcal{G}_{,I}^{i} \mathcal{D}^{I}{}_{j}\big) = \mathsf{Det}\big(\mathcal{G}_{,I}^{i} \mathcal{D}^{I}{}_{j}\big)\Big|_{\mathsf{hard}}$$

$$UV \rightarrow 0 EFT$$

Matching with the PFBF gauge

Massive ghosts of the PFBF gauge don't need to be mimicked by any EFT loops

$$\overline{\Gamma}_{UV} \supset \mathsf{Det}(\mathcal{G}^{i}_{,l}D^{l}_{,j}) = \mathsf{Det}(\mathcal{G}^{i}_{,l}D^{l}_{,j})\Big|_{\mathsf{hard}}$$

-G/H

Integrating out heavy vectors at tree-level gives identical vertices to the soft-region of UV loops

Also the GF condition for the quantum fields.

$$S_{\text{EFT}}^{(0)} = S_{\text{UV}} + S_{\text{fix}}^{G/H}, \qquad \frac{\delta(S_{\text{UV}} + S_{\text{fix}}^{G/H})}{\delta \Phi} = 0$$

Matching with the PFBF gauge

Massive ghosts of the PFBF gauge don't need to be mimicked by any EFT loops

$$\overline{\Gamma}_{UV} \supset \mathsf{Det}(\mathcal{G}^{i}_{,l}D^{l}_{,j}) = \mathsf{Det}(\mathcal{G}^{i}_{,l}D^{l}_{,j})\Big|_{\mathsf{hard}}$$

Integrating out heavy vectors at tree-level gives identical vertices to the soft-region of UV loops

Also the GF condition for the quantum fields.

$$S_{\text{EFT}}^{(0)} = S_{\text{UV}} + S_{\text{fix}}^{G/H}, \qquad \frac{\delta(S_{\text{UV}} + S_{\text{fix}}^{G/H})}{\delta\Phi} = 0$$

CIU

Matching broken gauge theories with the PFBF gauge

$$S_{\text{EFT}}[\overline{\phi}] = \overline{\Gamma}_{\text{UV}}[\overline{\eta}]\Big|_{\text{hard}}, \qquad \frac{\delta \overline{\Gamma}_{\text{UV}}|_{\text{hard}}}{\delta \Phi}[\overline{\eta}] = 0$$
AET [2404.11640]

The soft-region cancellation of the one-loop functional traces can be explicitly demonstrated

Anders Eller Thomsen (U. Bern)

- Practical matching relies on the hard-region matching formula
- The formula can be generalized to unbroken gauge theories with the BF gauge
- The partially fixed BF gauge allows for extension to broken gauge symmetries

