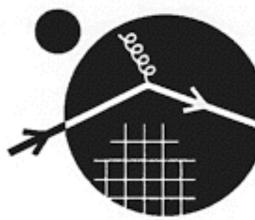
Paul Scherrer Institute August 2 2024

The first row of the CKM matrix: puzzles and perspectives

Vincenzo Cirigliano University of Washington



INSTITUTE for NUCLEAR THEORY

Introduction: Cabibbo universality in the Standard Model and beyond

- Ist row CKM matrix:
 - Paths to $V_{ud} \& V_{us}$ and current puzzles
 - Radiative corrections to neutron and nuclear decays EFT approach
 - Implications for new physics
- Conclusions and outlook

VOLUME 10, NUMBER 12

PHYSICAL REVIEW LETTERS

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

• • •

Hypothesis that the weak hadronic current has 'unit length' in flavor space.

Ratio of strangeness changing and conserving weak couplings controlled by the Cabibbo angle.

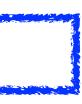
We want, however, to keep a weaker form of universality, by requiring the following: (3) J_{μ} has "unit length," i.e., $a^2 + b^2 = 1$. We then rewrite J_{μ} as⁴ $J_{\mu} = \cos\theta(j_{\mu}^{(0)} + g_{\mu}^{(0)}) + \sin\theta(j_{\mu}^{(1)} + g_{\mu}^{(1)}),$ (2)

where $\tan\theta = b/a$.

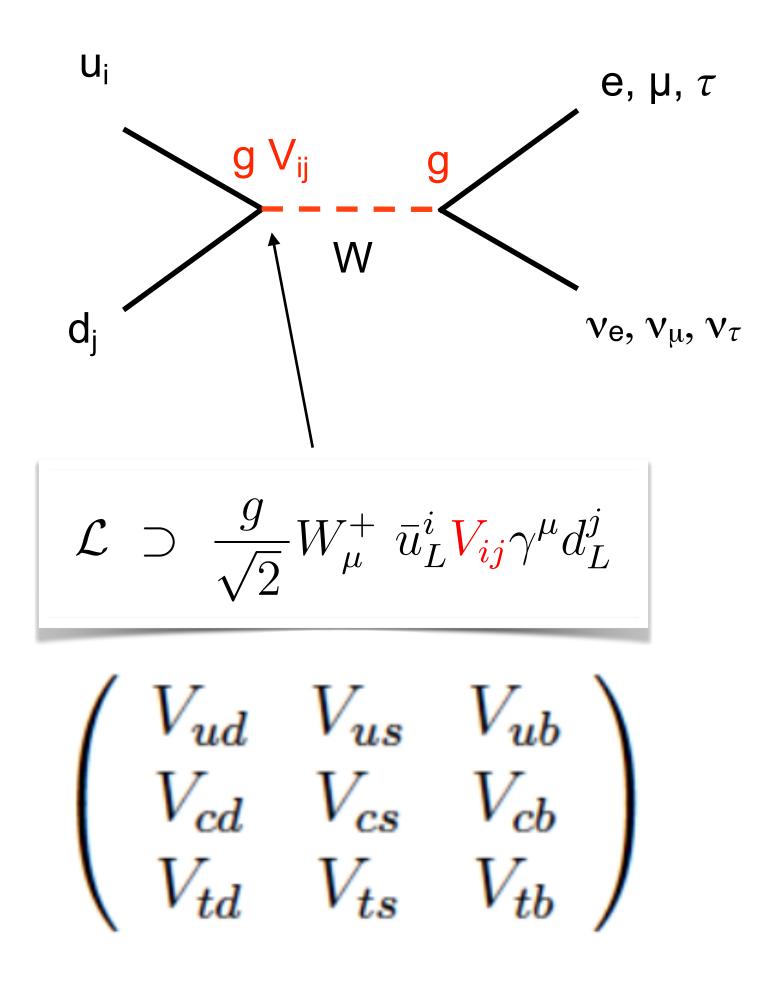
15 JUNE 1963

Visionary!

• • •



In the Standard Model: Cabibbo universality \leftarrow unitarity of the quark mixing matrix (CKM)

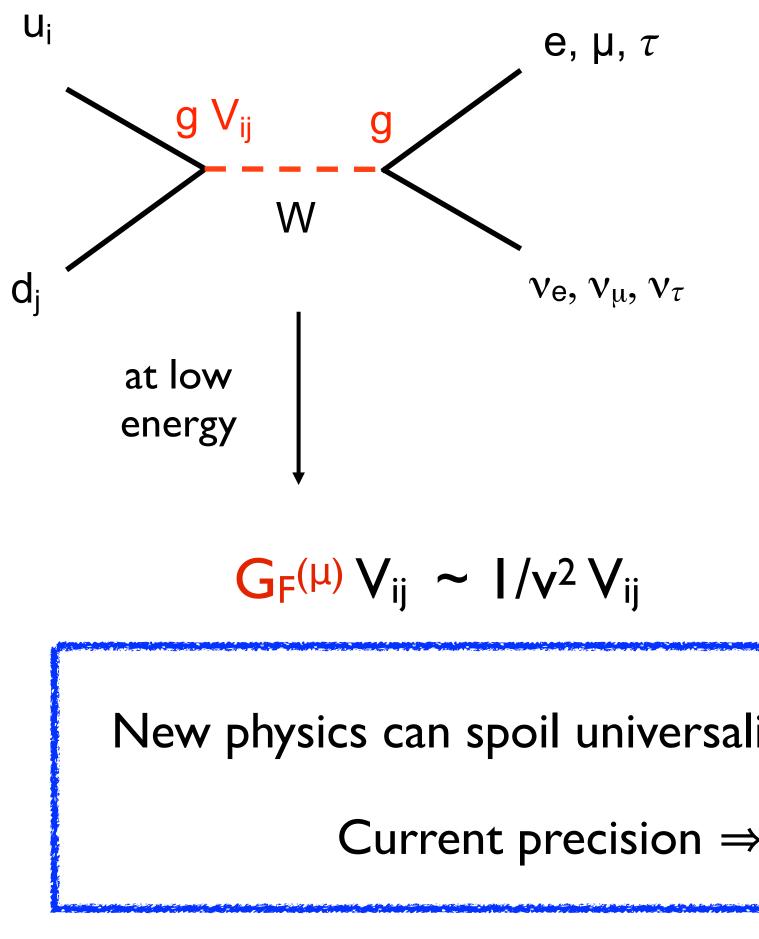


Cabibbo-Kobayashi-Maskawa

Cabibbo universality in the SM and beyond

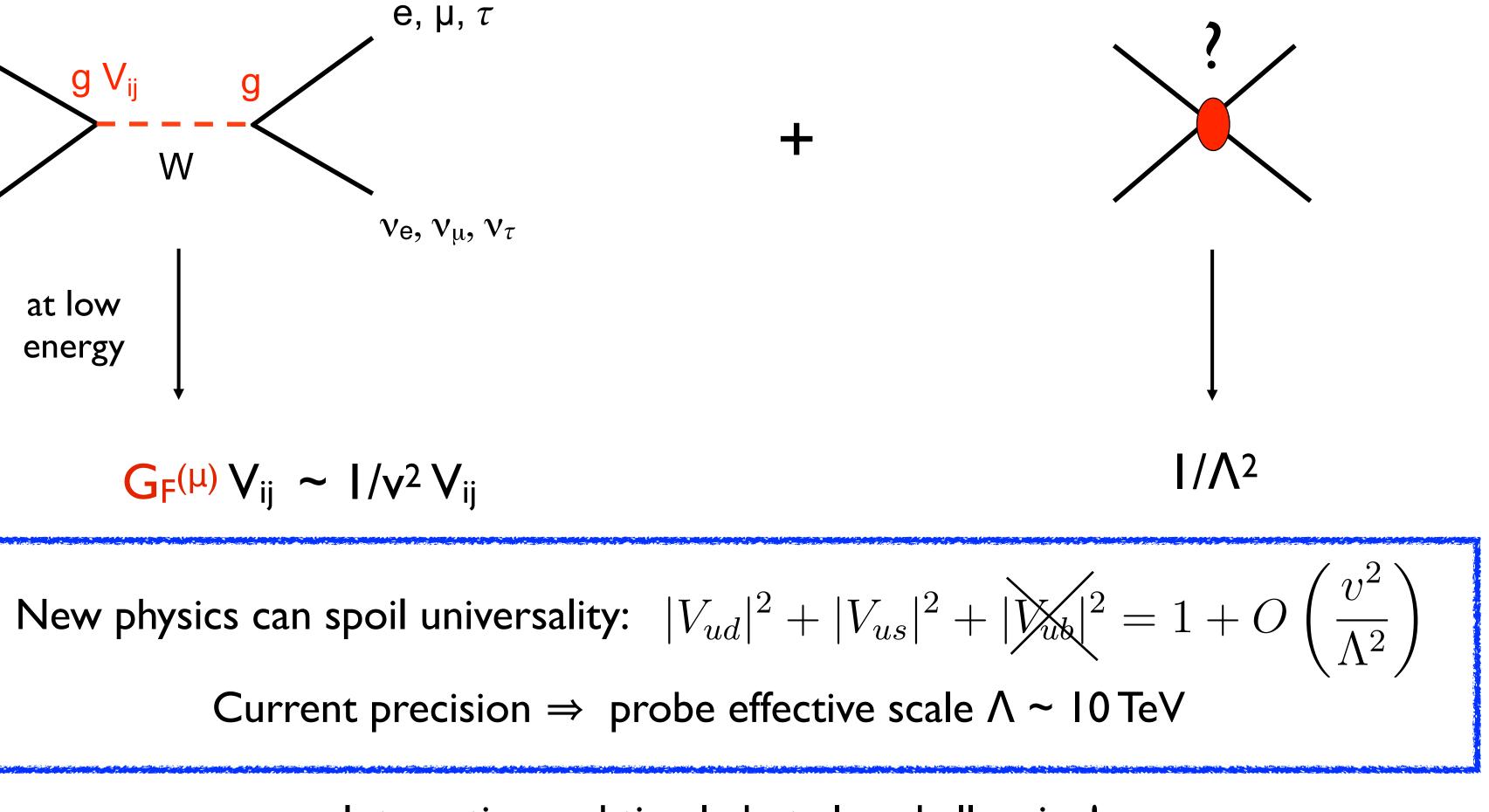
~0..95 ~0.05 ~1.5 ×10⁻⁵ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $\delta V_{ud} / V_{ud} \sim 0.03\%$ $\delta V_{us} / V_{us} \sim 0.2\%$ $\delta V_{ub}/V_{ub} \sim 5\%$ V_{ud} and V_{us} are the most accurately known elements of the CKM matrix \Rightarrow Ist row provides the most stringent test of universality & sensitivity to new physics

In the Standard Model: Cabibbo universality \leftarrow unitarity of the quark mixing matrix (CKM)



Interesting and timely, but also challenging!

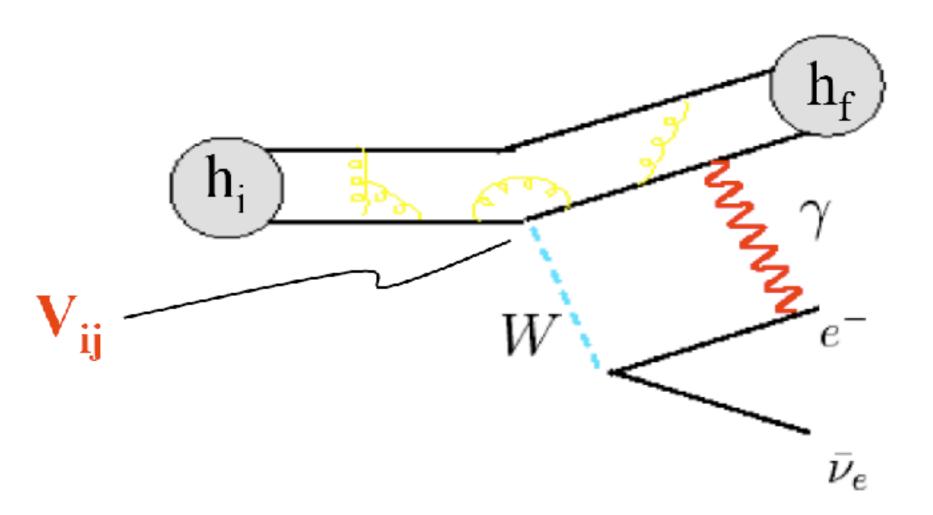
Cabibbo universality in the SM and beyond



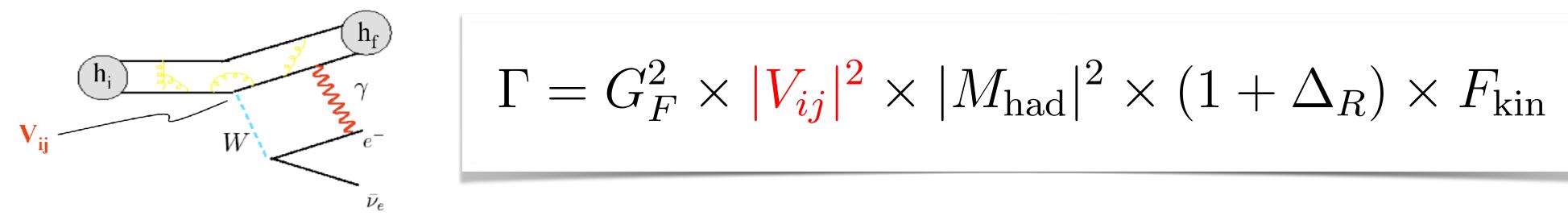
$V_{ud} \& V_{us}$: status and puzzles

Paths to V_{ud} and V_{us}

	Hadron decays		Lepton decays	
V _{ud}	$\pi^{\pm} \rightarrow \pi^{0} e v$ Nucl. 0 ⁺ \rightarrow 0 ⁺	$n \rightarrow pe\overline{v}$	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
V _{us}	$K \rightarrow \pi \mid v$	$\Lambda \rightarrow pe\nu,$	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

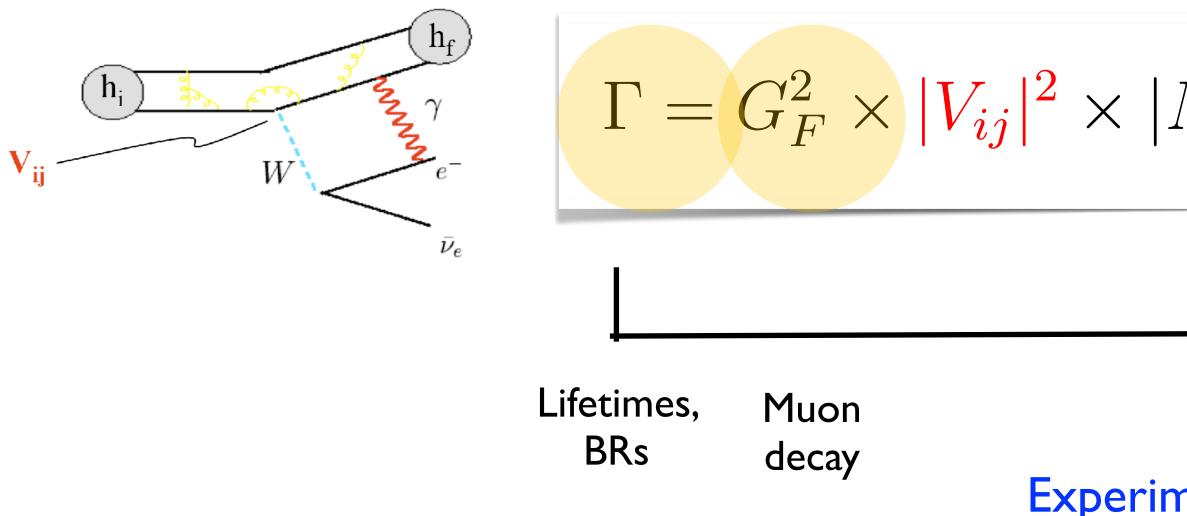


The challenge of CKM precision tests



Extract $V_{us} = \sin \theta_C = \lambda$ and $V_{ud} = \cos \theta_C \simeq 1 - \lambda^2/2$ with sub-percent precision from decays involving hadrons (currently $\delta\lambda/\lambda \sim 0.2-0.5\%$)

The challenge of CKM precision tests



Extract $V_{us} = \sin\theta_C = \lambda$ and $V_{ud} = \cos\theta_C \simeq 1 - \lambda^2/2$ with sub-percent precision from decays involving hadrons (currently $\delta\lambda/\lambda \sim 0.2-0.5\%$)

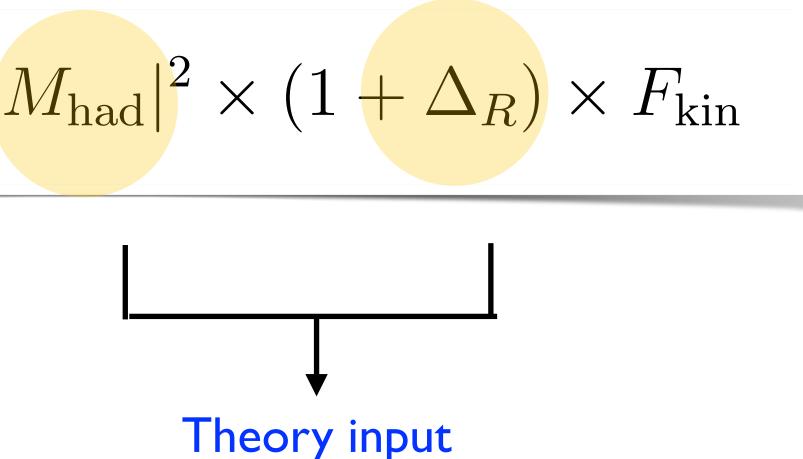
 $\Gamma = G_F^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \Delta_R) \times F_{\text{kin}}$ Q-values, form factors, $\dots \rightarrow$ phase space **Experimental** input

The challenge of CKM precision tests

$$\mathbf{v}_{ij} \xrightarrow{\mathbf{h}_{f}}_{W} \xrightarrow{\mathbf{v}_{e^{-}}}_{\overline{\nu}_{e^{-}}} \qquad \Gamma = G_{F}^{2} \times |V_{ij}|^{2} \times |I|^{2}$$

Hadronic / nuclear matrix elements of the weak V-A current, including small corrections such as those induced by electromagnetic radiative corrections $[(\alpha/\pi) \sim 2.\times 10^{-3}]$

Extract $V_{us} = \sin\theta_C = \lambda$ and $V_{ud} = \cos\theta_C \simeq 1 - \lambda^2/2$ with sub-percent precision from decays involving hadrons (currently $\delta\lambda/\lambda \sim 0.2-0.5\%$)

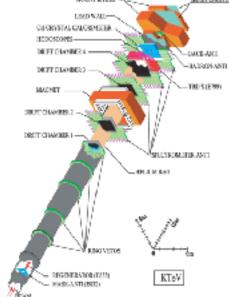


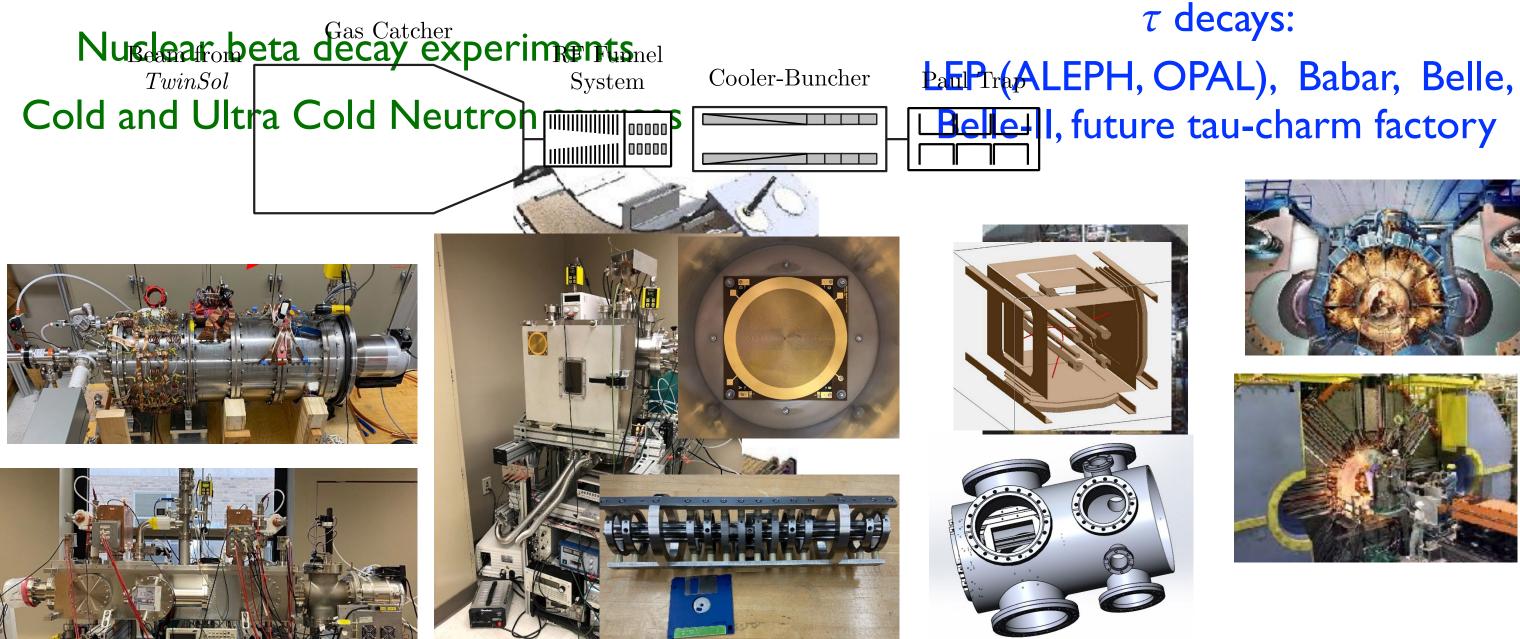
Experiment Hadron de $V_{ud} \qquad \pi^{\pm} \rightarrow \pi^{0} e \nu$ Nucl. $0^{+} \rightarrow 0^{+}$ $n \rightarrow$ $\mathsf{V}_{\mathsf{us}} \mid K \to \pi \mid \nu \mid \Lambda \to$

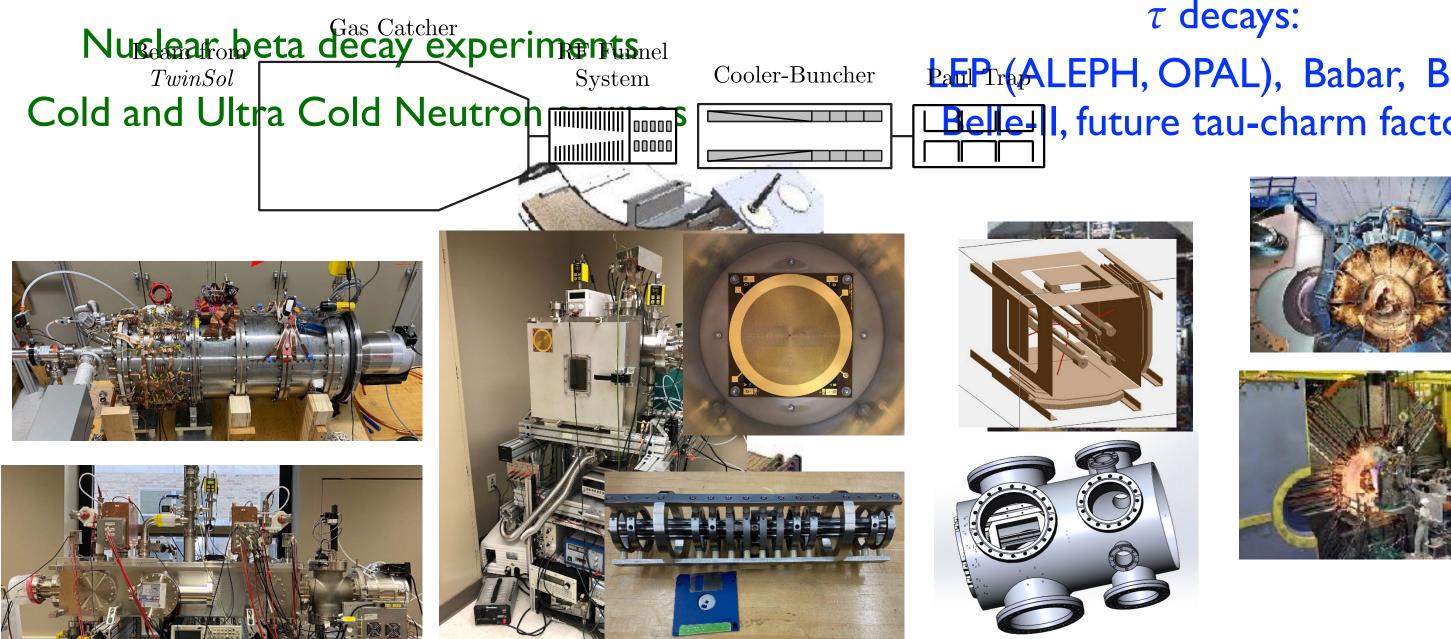
Experimental input with sub-% precision from broad array of facilities and techniques

K, π, Hyperons: Meson factories & fixed target experiments (KLOE, KTeV, NA48,...), with future experiment possible at CERN and PSI

TwinSol



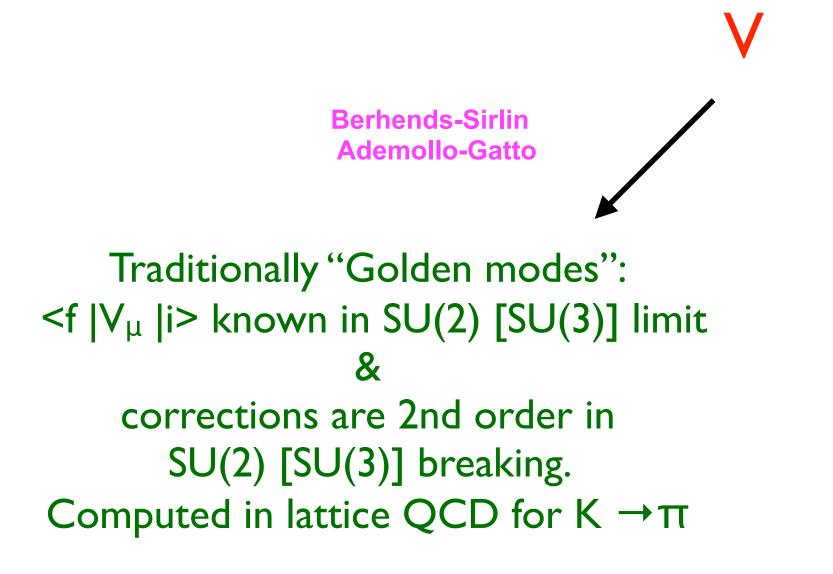


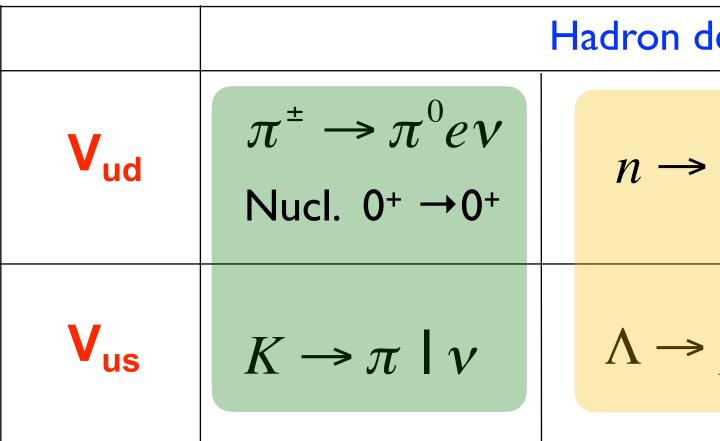


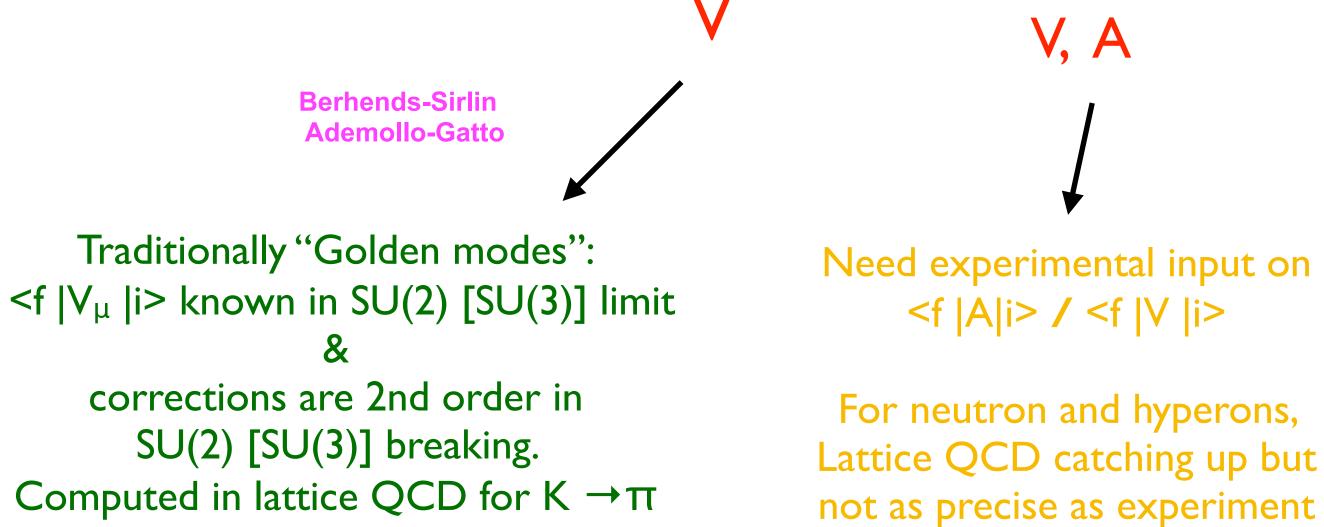
lecays		Lepton decays
pev	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
pev,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

	Hadron decays			Lepton decays
V _{ud}	$\pi^{\pm} \rightarrow \pi^{0} e v$ Nucl. 0 ⁺ \rightarrow 0 ⁺	$n \rightarrow pev$	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
V _{us}	$K \rightarrow \pi \mid v$	$\Lambda \rightarrow pe\nu,$	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

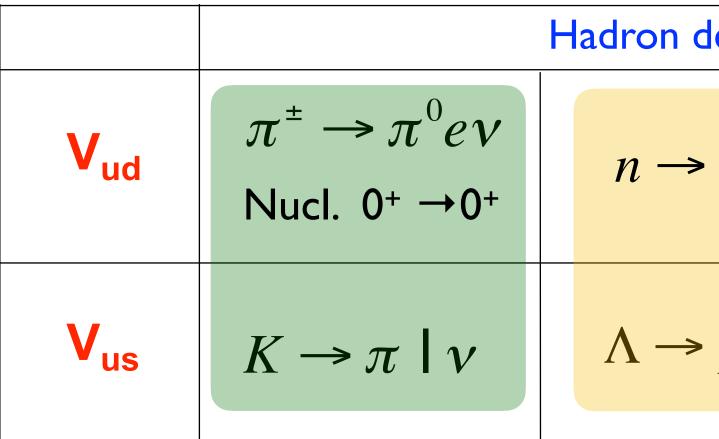
	Hadron decays		Lepton decays	
V _{ud}	$\pi^{\pm} \rightarrow \pi^{0} e v$ Nucl. 0 ⁺ \rightarrow 0 ⁺	$n \rightarrow pev$	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
V _{us}	$K \rightarrow \pi \mid v$	$\Lambda \rightarrow pev,$	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

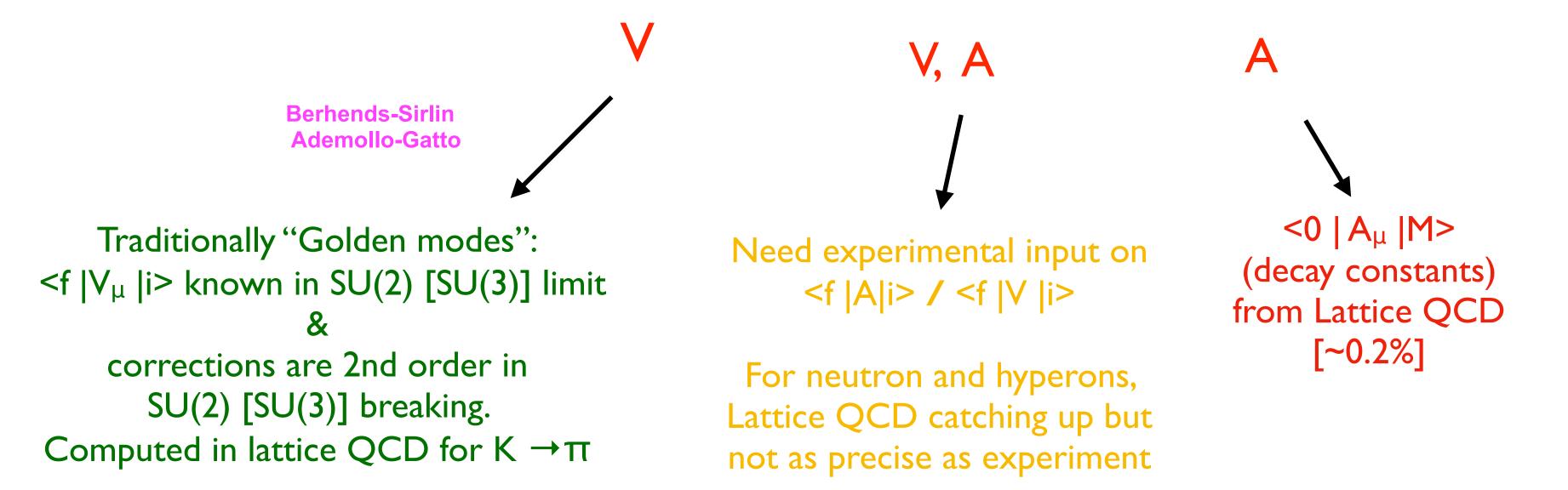




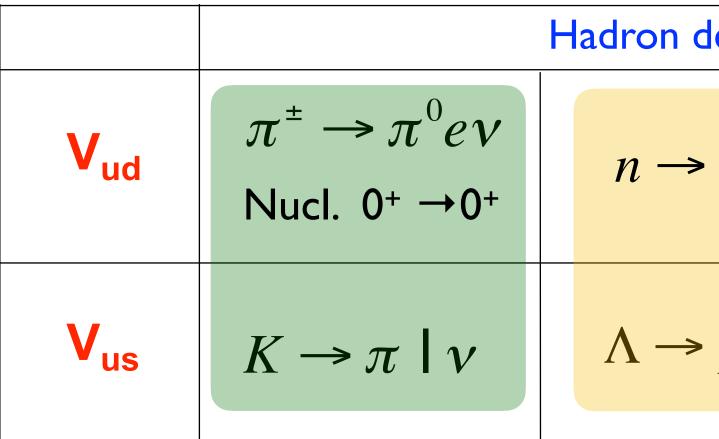


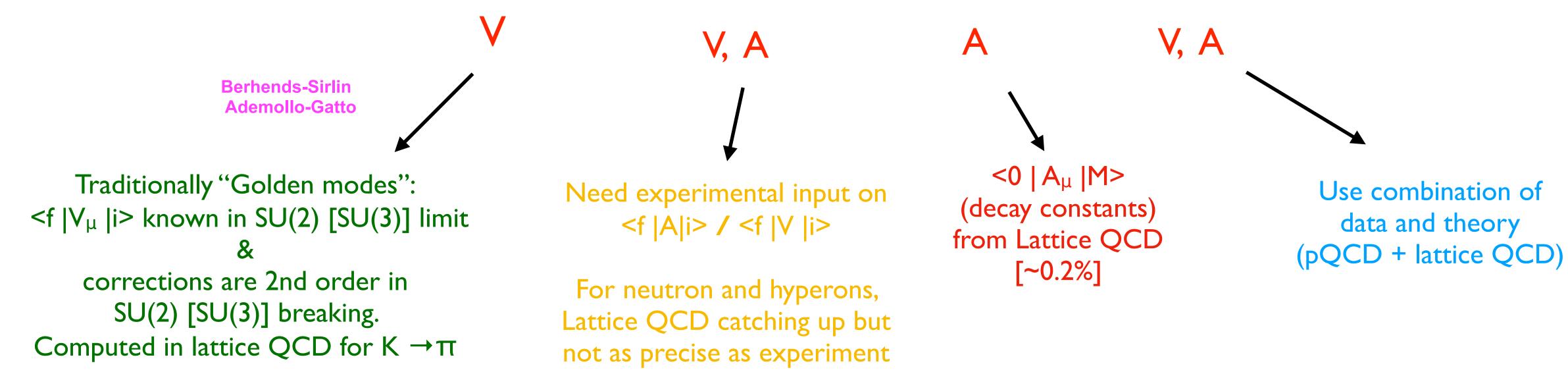
ecays		Lepton decays
pev	$\pi \to \mu \nu$	$ au \to h_{NS} u$
pev,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$





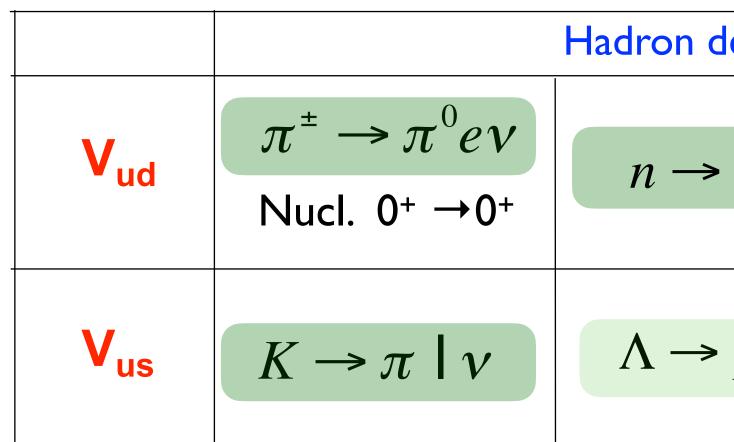
lecays		Lepton decays
pev	$\pi \to \mu \nu$	$ au o h_{NS} u$
pev,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$





lecays		Lepton decays
pev	$\pi \to \mu \nu$	$ au o h_{NS} u$
pev,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

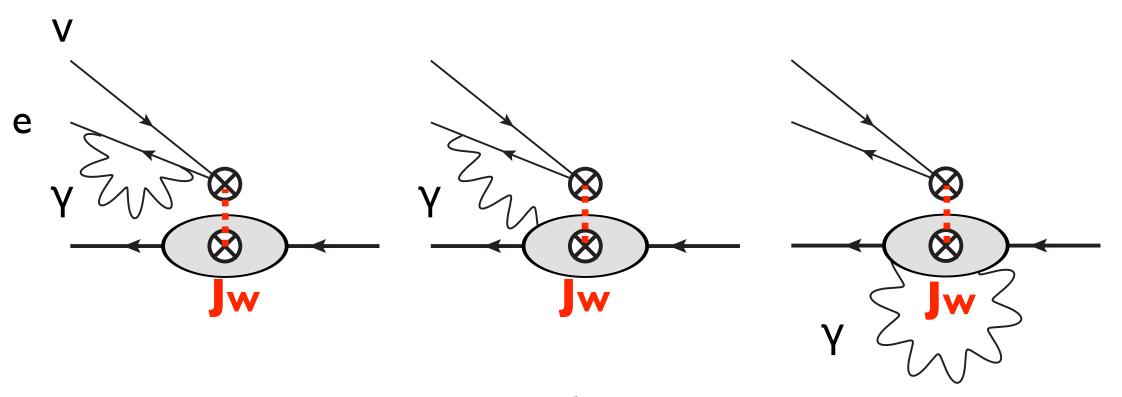
Radiative corrections



Electroweak radiative corrections

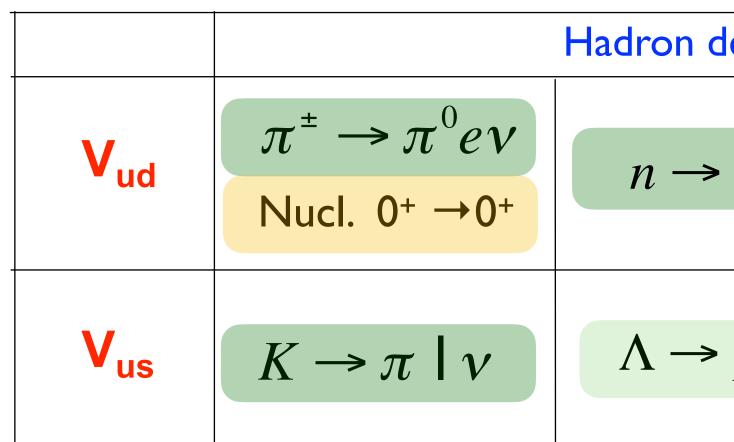
Mesons and neutron: well developed frameworks (Sirlin's current algebra and Effective Field Theory), with non-perturbative input from lattice QCD and / or dispersive methods — systematically improvable

For leptonic meson decays: full lattice QCD+QED available



lecays		Lepton decays
pev	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
<i>pev</i> ,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

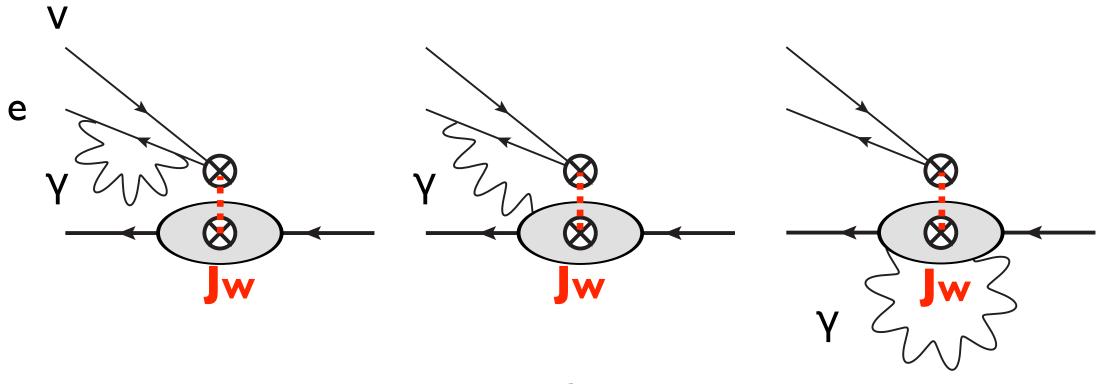
Radiative corrections



Electroweak radiative corrections

Mesons and neutron: well developed frameworks (Sirlin's current algebra and Effective Field Theory), with non-perturbative input from lattice QCD and / or dispersive methods — systematically improvable

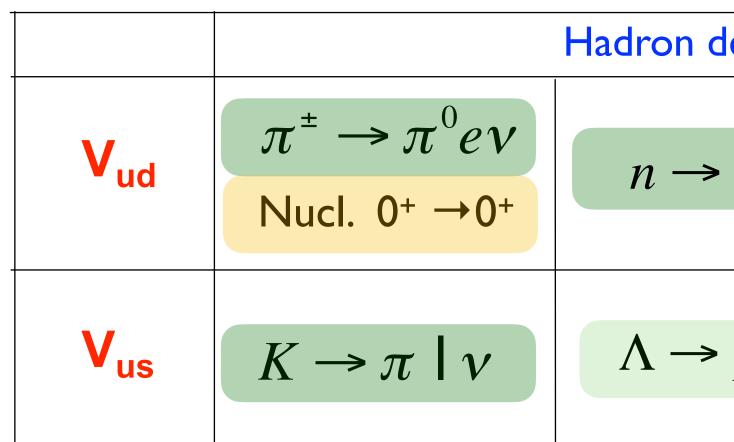
For leptonic meson decays: full lattice QCD+QED available



lecays		Lepton decays
pev	$\pi \to \mu \nu$	$\tau \to h_{NS} \nu$
<i>pev</i> ,	$K \rightarrow \mu \nu$	$\tau \to h_S \nu$

Recent activity to assess nuclear structure uncertainties: Dispersive approach recently developed. Recent progress towards multi-nucleon EFT

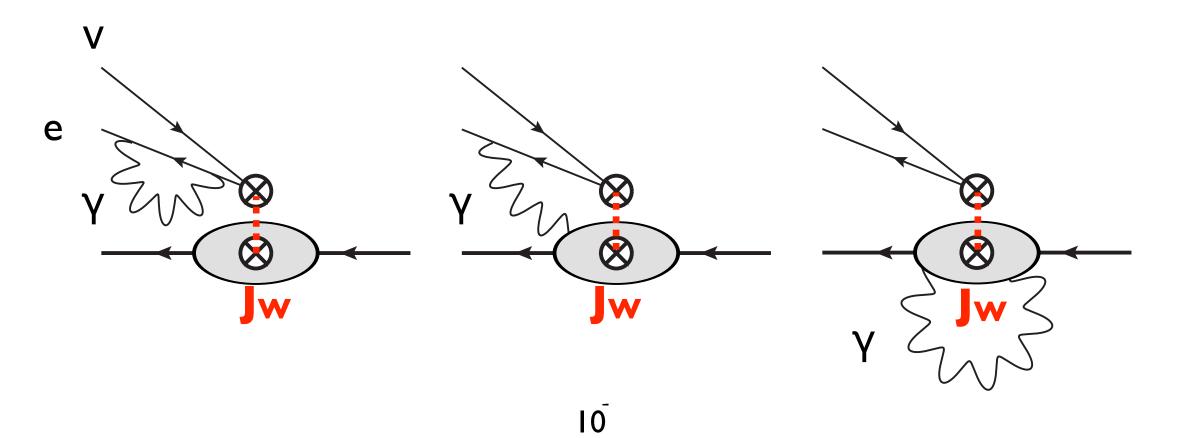
Radiative corrections



Electroweak radiative corrections

Mesons and neutron: well developed frameworks (Sirlin's current algebra and Effective Field Theory), with non-perturbative input from lattice QCD and / or dispersive methods — systematically improvable

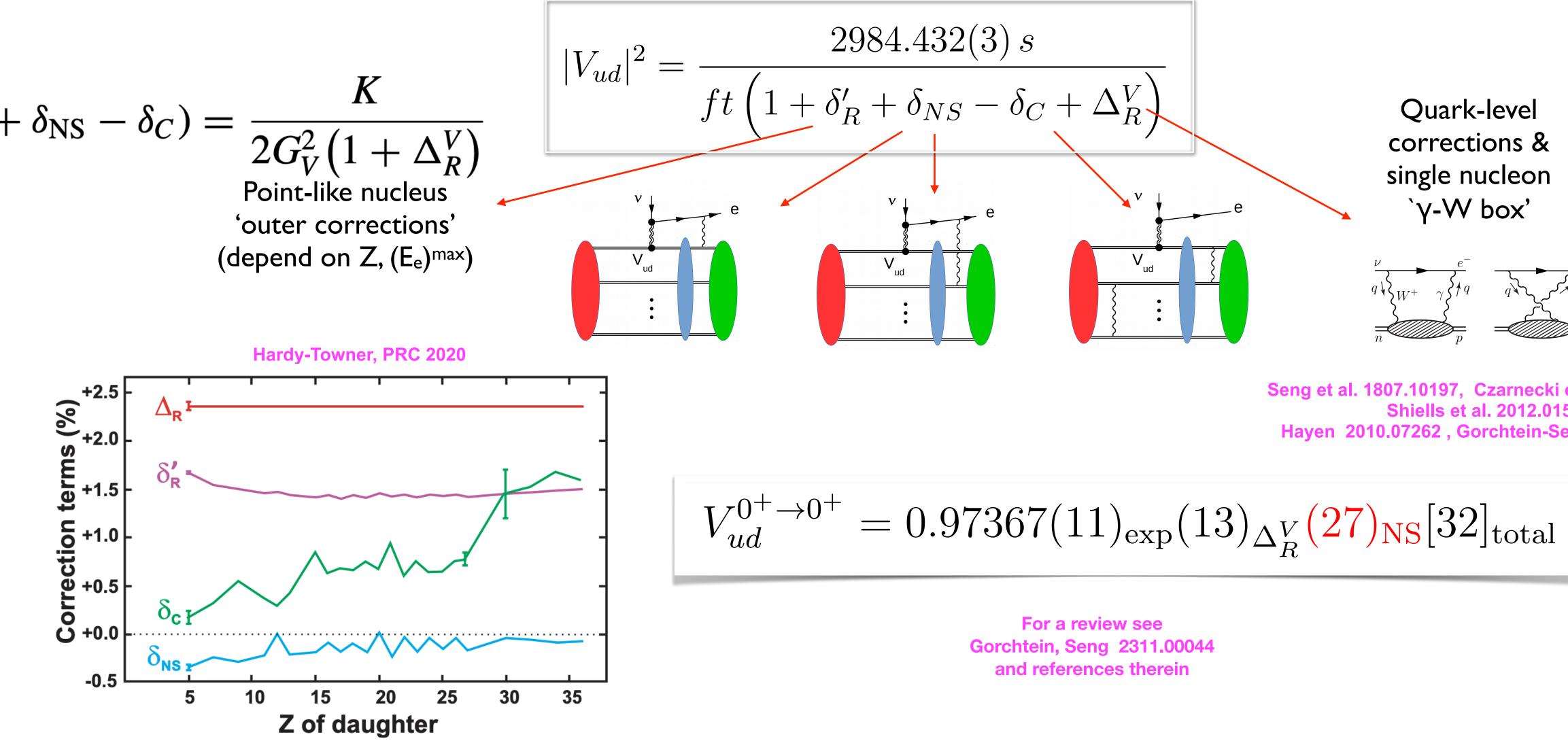
For leptonic meson decays: full lattice QCD+QED available Recent activity to assess nuclear structure uncertainties: Dispersive approach recently developed. Recent progress towards multi-nucleon EFT



lecays		Lepton decays
pev	$\pi \to \mu \nu$	$ au o h_{NS} u$
<i>pev</i> ,	$K \rightarrow \mu \nu$	$ au \to h_S u$

For exclusive channels, difficult to estimate the hadronic structure-dependent effects. The only way ma be Lattice QCD+QED?

V_{ud} from nuclear $0^+ \rightarrow 0^+$ beta decays

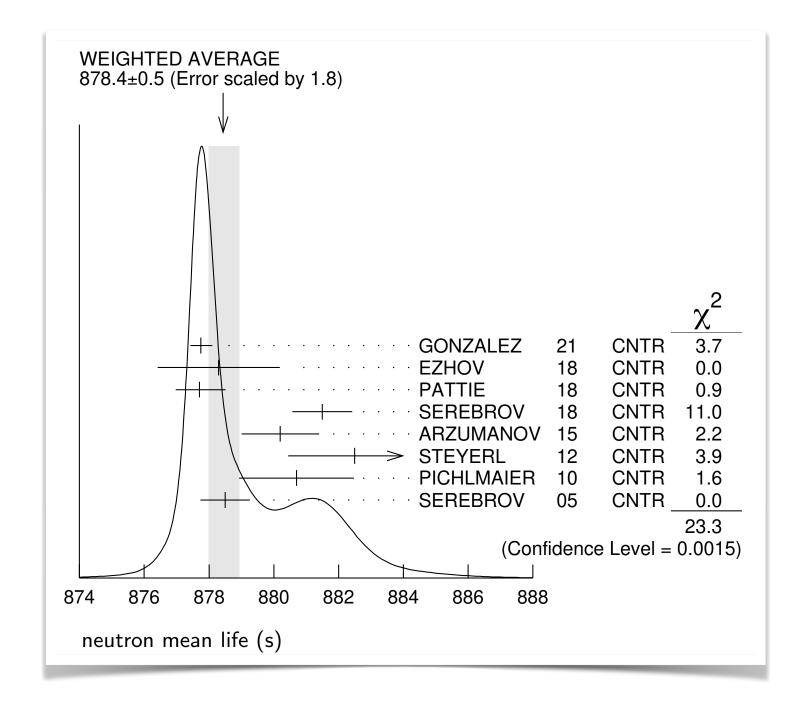


Seng et al. 1807.10197, Czarnecki et al, 1907.06737, Shiells et al. 2012.01580 Hayen 2010.07262, Gorchtein-Seng 2106.09185

V_{ud} from neutron decay

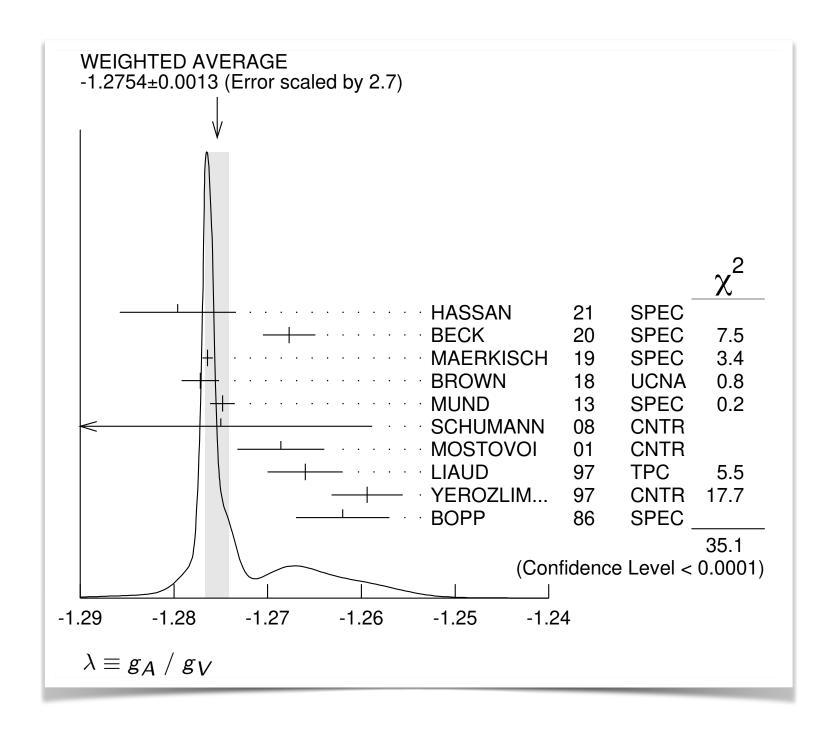
$$\lambda = g_{A}/g_{V} \qquad \qquad \Gamma_{n} = \frac{G_{F}^{2}|V_{ud}|^{2}m_{e}^{5}}{2\pi^{3}} \left(1 + \frac{3\lambda^{2}}{2}\right) \cdot f_{0} \cdot \left(1 + \Delta_{f}\right) \cdot \left(1 + \Delta_{R}\right),$$

- **Radiative corrections:** NLL setup + LECs in terms of ' γ -W box' (dispersive & Lattice QCD)
- **Experimental input:** PDG averages include large scale factor, particularly for g_A / g_V



$$\Delta_{\rm R} = 4.044(2$$
$$\Delta_f = 3.573(5$$

VC, W. Dekens, E. Mereghetti, **O. Tomalak**, 2306. 03138 and references therein



V_{ud} from neutron decay

$$\lambda = g_{A}/g_{V} \qquad \Gamma_{n} = \frac{G_{F}^{2}|V_{ud}|^{2}m_{e}^{5}}{2\pi^{3}} \left(1 + 3\lambda^{2}\right) \cdot f_{0} \cdot \left(1 + \Delta_{f}\right) \cdot \left(1 + \Delta_{R}\right),$$

- **Radiative corrections:** NLL setup + LECs in terms of ' γ -W box' (dispersive & Lattice QCD)
- **Experimental input:** PDG averages include large scale factor, particularly for g_A / g_V

Single most precise measurements of lifetime and λ imply very competitive V_{ud}!

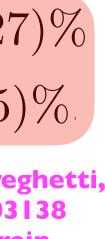
Maerkish et al, Gonzalez et al, 1812.04666 2106.10375

 $V_{ud}^{n,\text{PDG}} = 0.97430(2)_{\Delta_f}(13)_{\Delta_R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}}$ $V_{ud}^{n,\text{best}} = 0.97402(2)_{\Delta_f}(13)_{\Delta_R}(35)_{\lambda}(20)_{\tau_n}[42]_{\text{total}}$

$$\Delta_{\rm R} = 4.044(2$$
$$\Delta_f = 3.573(5$$

VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306.03138 and references therein

Need improvements in lifetime and g_A / g_V . Within reach in next 5 years



$$\Gamma(\pi^+ \to \pi^0 e^+ \nu(\gamma)) = \frac{G_{\mu}^2 |V_{\rm ud}|^2 m_{\pi^+}^5 \left| f_{\pm}^{\pi}(0) \right|^2}{64\pi^3} (1 + \mathrm{RC}_{\pi}) I_{\pi},$$

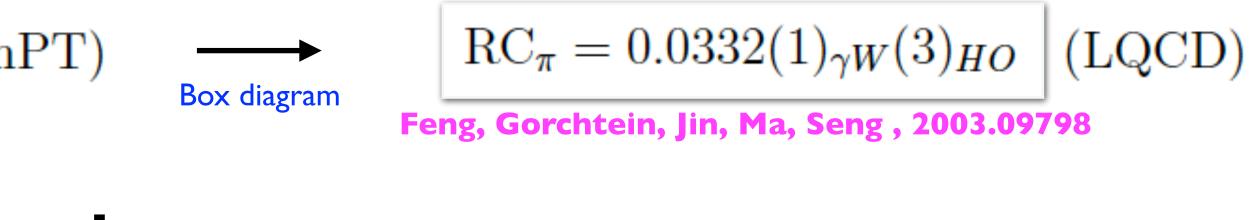
$$f_{+}(0) - 1 - \frac{1}{(4\pi F_{\pi})^{2}} \frac{\left(M_{K^{+}}^{2} - M_{K_{0}}^{2}\right)_{\text{QCD}}^{2}}{24M_{K}^{2}} - 1 + O\left(\frac{m_{u} - m_{d}}{\Lambda_{\text{QCD}}}\right)^{2}$$

$$RC_{\pi} = 0.0342(10)$$
 (Ch

Theory in great shape. 0.3% total error on V_{ud} dominated by $BR = 1.036(6) \times 10^{-8}$ [PIBETA, hep-ex/0312030]

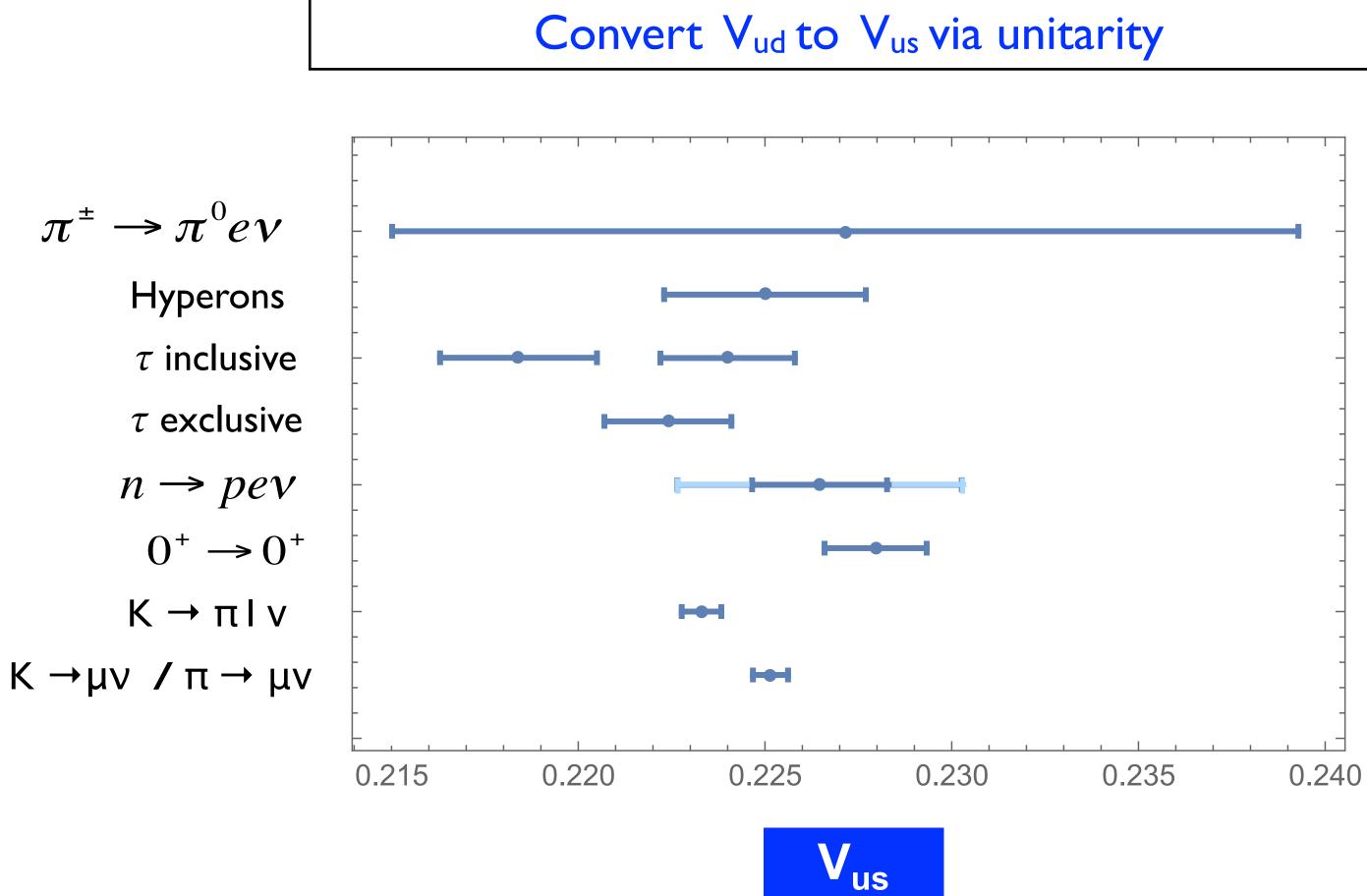
$$V_{ud}^{(\pi\beta)} = 0.97386 \, (281)_{BR} \, (9)_{\tau_{\pi}} \, (14)_{RC} \, (28)_{I_{\pi}} \, [283]_{\text{total}}$$

V_{ud} from pion β decay



Experiment needs order-ofmagnitude improvement in precision to be competitive \rightarrow PIONEER @ PSI 2203.01908

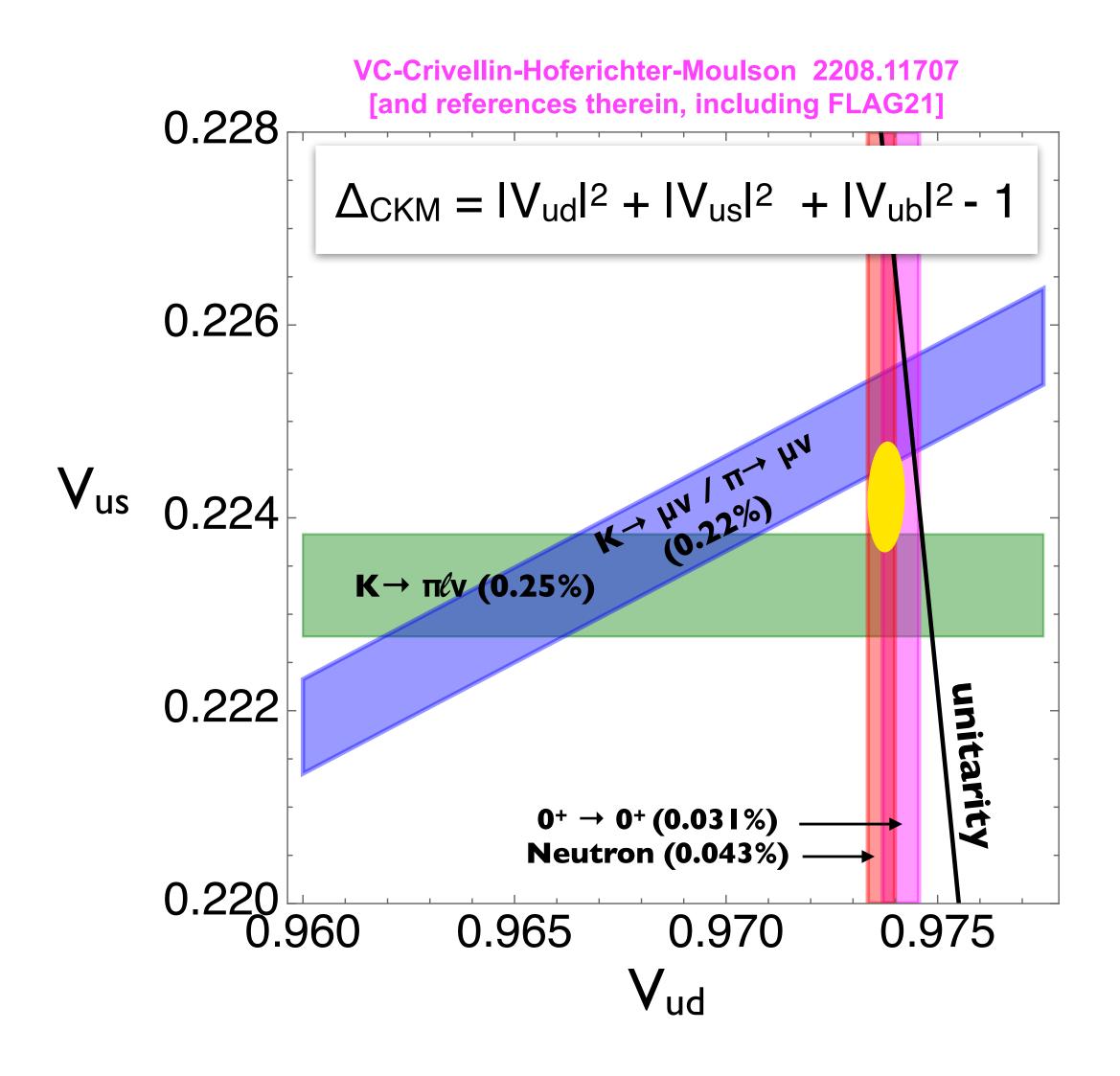
The Cabibbo angle — global view



Tension among the most precise determinations

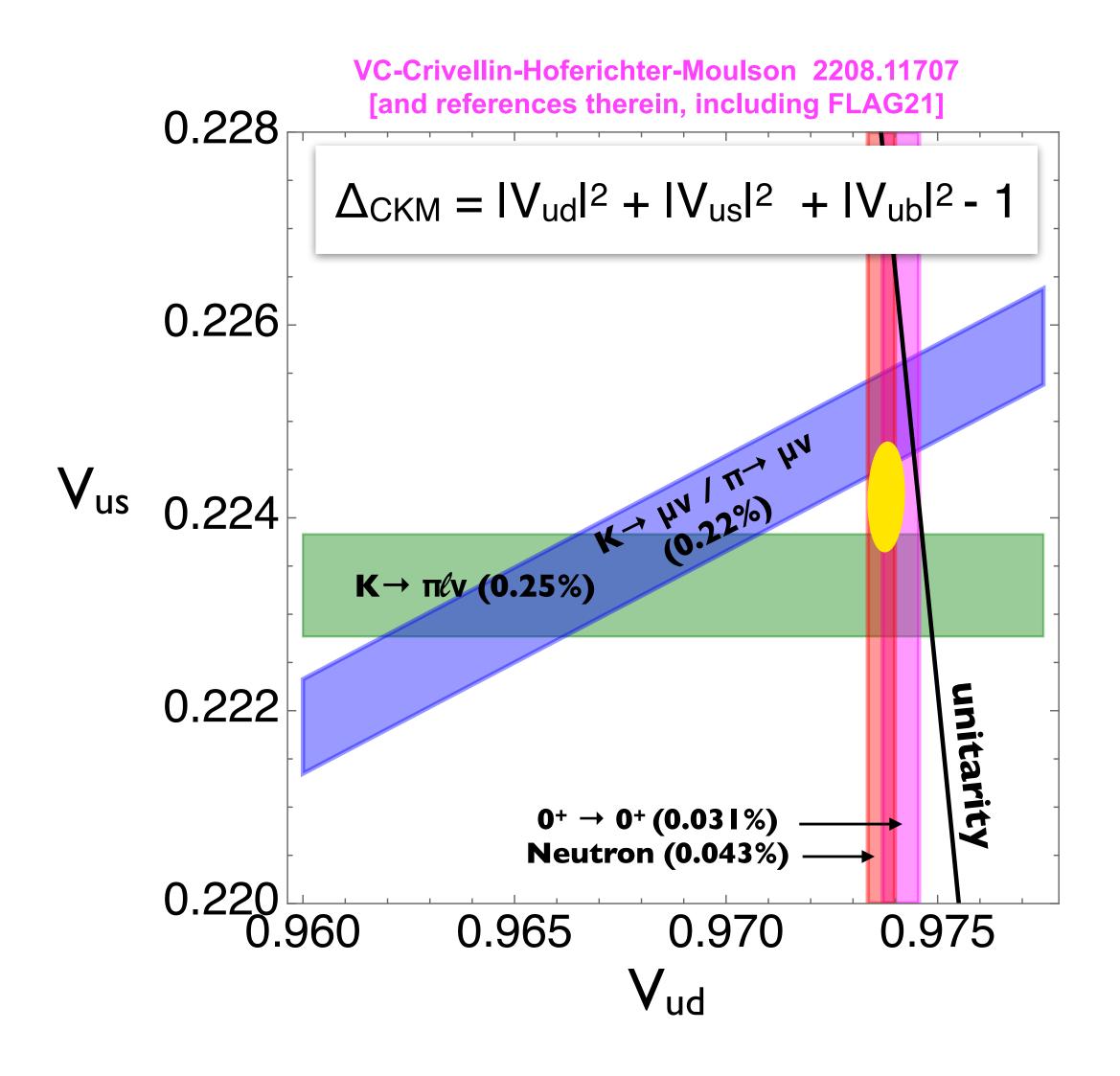
Fractional uncertainty	Larges uncertai
5.3%	EXP
1.2% +?	EXP + T
0.8% + ?	EXP + T
0.8%	EXP + T
0.8% (1.7%) PDG	EXP
0.6%	тн
0.24%	EXP + T
0.21%	тн

Tensions in the V_{ud} - V_{us} plane



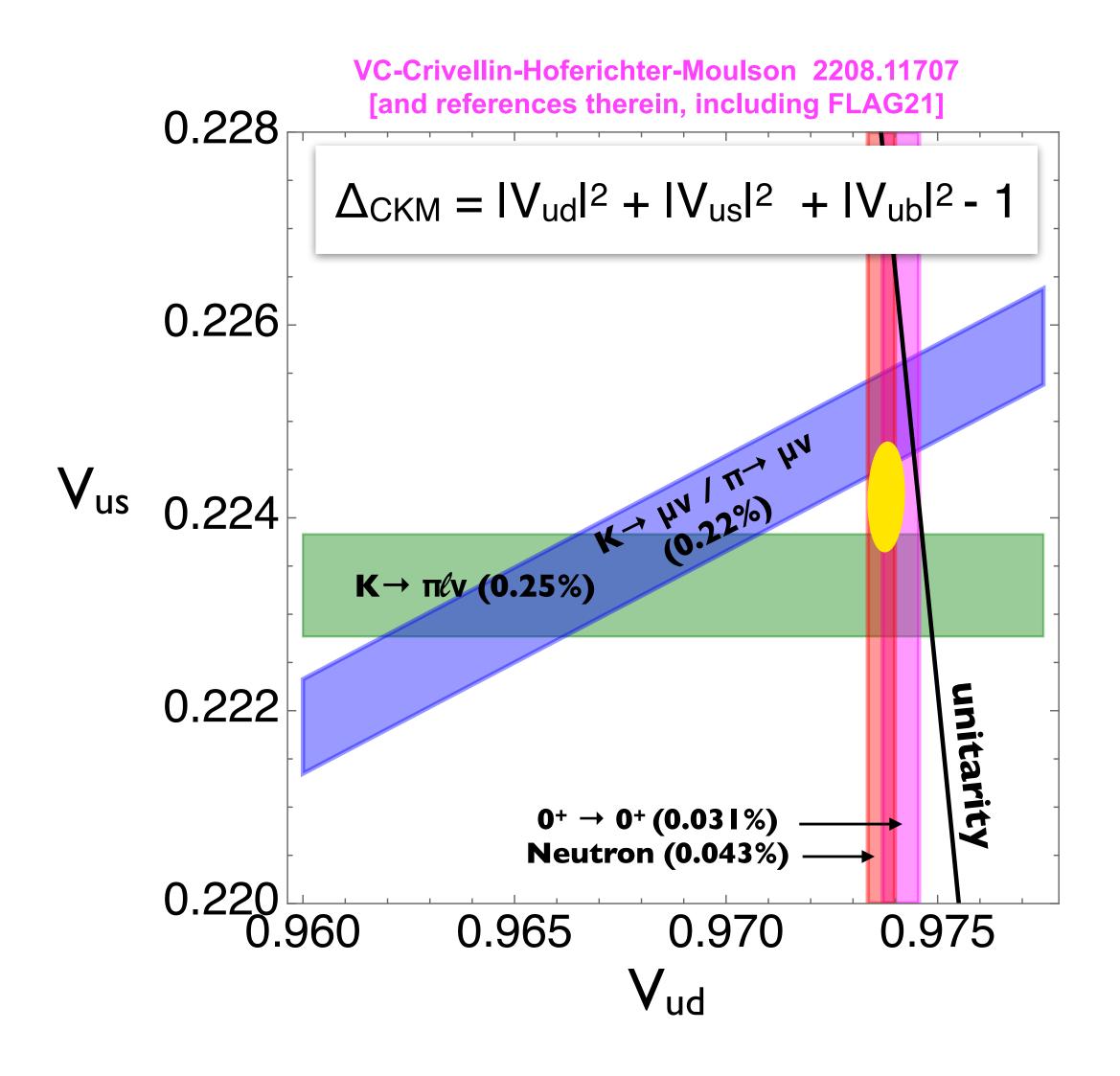
- Bands don't intersect in the same region on the unitarity circle
- ~3 σ effect in global fit (Δ_{CKM} = -1.48(53) ×10⁻³)

Tensions in the V_{ud}-V_{us} plane



- Expected experimental improvements: lacksquare
 - neutron decay (will match nominal nuclear uncertainty)
 - pion beta decay (3x to 10x at PIONEER phases II, III)
 - new $K_{\mu3}/K_{\mu2}$ BR measurement at NA62 (ongoing)
- Further theoretical scrutiny
 - Lattice: $K \rightarrow \pi$ vector f.f. and rad. corr. for KI3
 - EFT for neutron and nuclei, with goal $\delta \Delta_R \sim 2 \times 10^{-4}$
 - . . .
- **Possible BSM explanations:** EFT & specific models

Tensions in the V_{ud}-V_{us} plane



- Expected experimental improvements: lacksquare
 - neutron decay (will match nominal nuclear uncertainty)
 - pion beta decay (3x to 10x at PIONEER phases II, III)
 - new $K_{\mu3}/K_{\mu2}$ BR measurement at NA62 (ongoing)
- Further theoretical scrutiny
 - Lattice: $K \rightarrow \pi$ vector f.f. and rad. corr. for KI3
 - EFT for neutron and nuclei, with goal $\delta \Delta_R \sim 2 \times 10^{-4}$

Possible BSM explanations: EFT & specific models

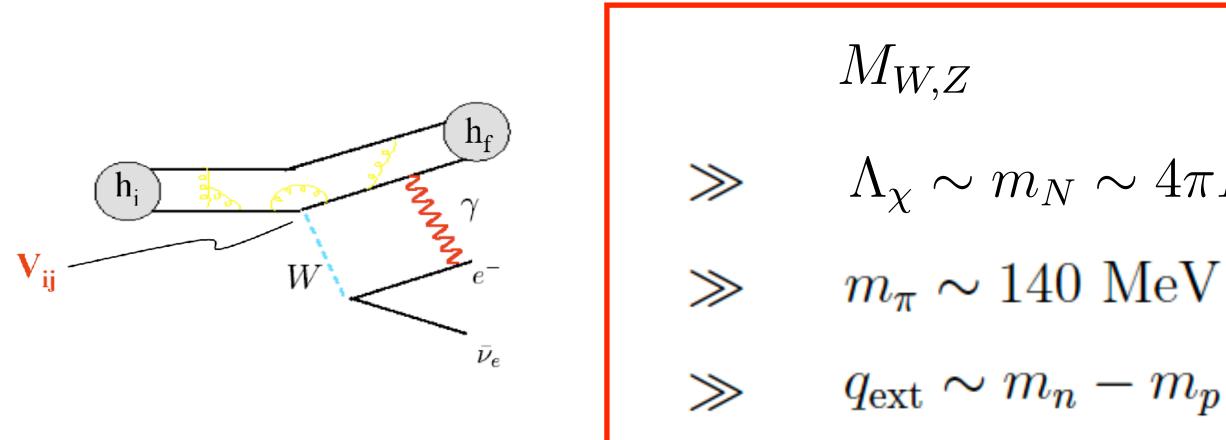
Will discuss in this talk

• • •

EFT approach to radiative corrections (neutron and nuclear beta decays)

EFT for radiative corrections: why?

• Widely separated mass scales play a role in neutron and nuclear beta decays



$$_{\rm V} \sim 4\pi F_{\pi} \sim 1 \,\,{\rm GeV}$$

 $q_{\rm ext} \sim m_n - m_p \sim m_e \sim 1 \,\,{\rm MeV}$

Weak scale

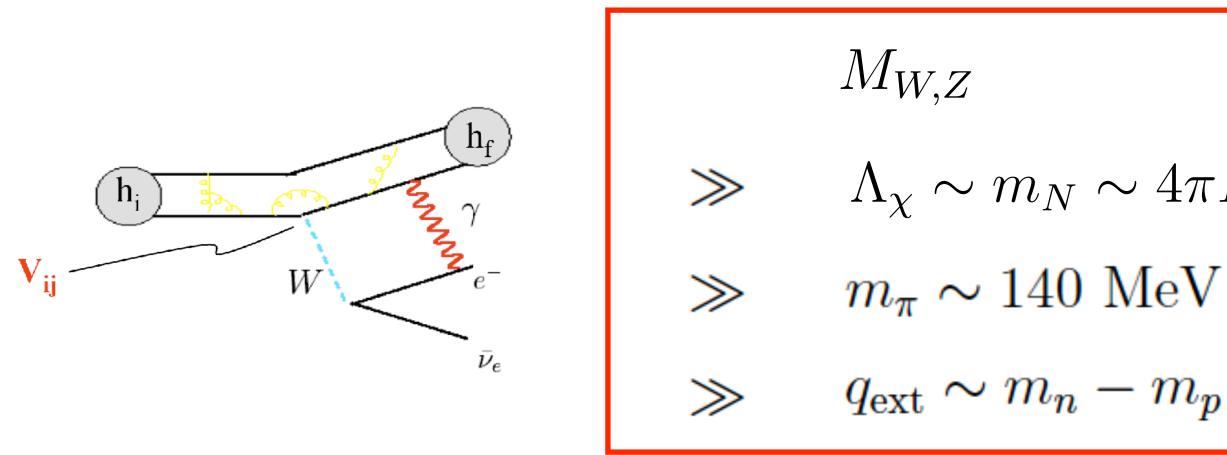
χSB & nucleon mass scale

Pion mass / hadronic structure

Q value, nuclear excitations

EFT for radiative corrections: why?

• Widely separated mass scales play a role in neutron and nuclear beta decays



Small ratios appear as expansion parameters and arguments of logarithms

$$\epsilon_W = \Lambda_{\chi}/M_W \sim 10^{-2} \quad \epsilon_{\chi} = m_{\pi}/\Lambda_{\chi} \sim 0.1 \quad \epsilon_{\text{recoil}} = q_{\text{ext}}/\Lambda_{\chi} \sim 10^{-3} \sim \alpha/\pi \quad \epsilon_{\pi} = q_{\text{ext}}/m_{\pi} \sim 10^{-3}$$

At the required precision (~10-4), need to keep terms of O(G_Fα), O(G_Fαε_χ), O(G_Fε_{recoil}), along with

$$_{\rm V} \sim 4\pi F_{\pi} \sim 1 \,\,{\rm GeV}$$

 $q_{\rm ext} \sim m_n - m_p \sim m_e \sim 1 \ {\rm MeV}$

Weak scale

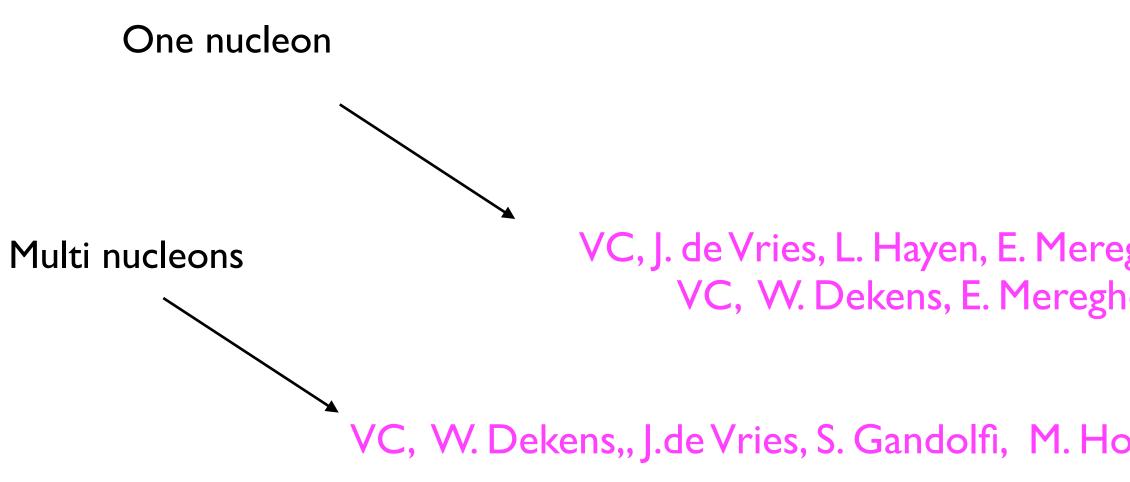
χSB & nucleon mass scale

Pion mass / hadronic structure

Q value, nuclear excitations

leading logarithms (LL~ ($\alpha \ln(\epsilon)$)ⁿ) and next-to-leading logarithms (NLL ~ $\alpha (\alpha \ln(\epsilon))^n$), $\alpha (\alpha \ln(\epsilon))^n$)

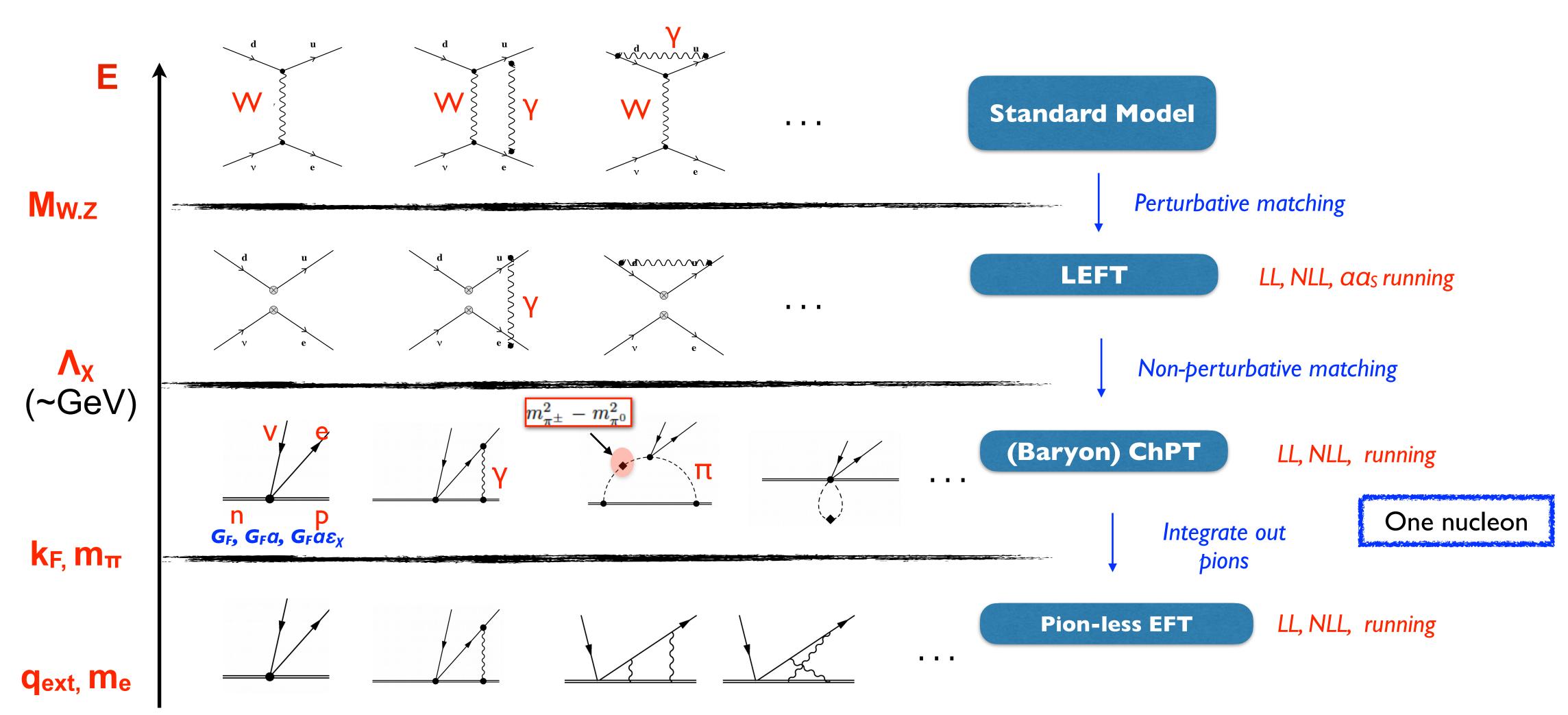
Multi-step strategy



Matching and running in a tower of EFTs: SM \rightarrow LEFT \rightarrow ChPT $\rightarrow \pi$ EFT, χ EFT

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439, PRL VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306. 03138, PRD

Matching and running in a tower of EFTs: SM \rightarrow LEFT \rightarrow ChPT $\rightarrow \#$ EFT, χ EFT



Standard Model → LEFT matching

$\mathcal{L}_{\text{LEFT}} = -2\sqrt{2}G_F \ \bar{e}_L\gamma_\rho\mu_L \ \bar{\nu}_{\mu L}\gamma^\rho\nu_{eL} - 2\sqrt{2}G_F V_{ud} \ C^r_\beta(a,\mu) \ \bar{e}_L\gamma_\rho\nu_{eL} \ \bar{u}_L\gamma^\rho d_L + \text{ h.c.} + \dots$

Muon decay

Finite piece depends on Y₅ scheme (use $B(a) = \frac{a}{6} - \frac{3}{4}$. NDR) and evanescent scheme $\gamma^{\alpha}\gamma^{\rho}\gamma^{\beta}P_{L}\otimes\gamma_{\beta}\gamma_{\rho}\gamma_{\alpha}P_{L}=4\left[1\right]$

Beta decays

$$B(a) - \frac{\alpha \alpha_s}{4\pi^2} \ln \frac{M_W}{\mu} + \mathcal{O}(\alpha \alpha_s) + \mathcal{O}(\alpha^2)$$

$$\left[1 + a\left(4 - d\right)\right]\gamma^{\rho}\mathrm{P}_{\mathrm{L}} \otimes \gamma_{\rho}\mathrm{P}_{\mathrm{L}} + \mathrm{E}\left(a\right)$$

Dekens-Stoffer, 1908.05295 Hill-Tomalak, 1911.01493

RGEs in the LEFT

$$\mu \frac{\mathrm{d}C_{\beta}^{r}(a,\mu)}{\mathrm{d}\mu} = \gamma(\alpha,\alpha_{s}) C_{\beta}^{r}(a,\mu),$$

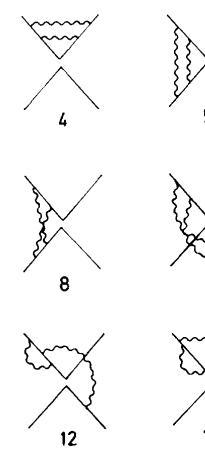
$$\gamma(\alpha,\alpha_{s}) = \gamma_{0} \frac{\alpha}{\pi} + \gamma_{1} \left(\frac{\alpha}{\pi}\right)^{2} + \gamma_{se} \frac{\alpha}{\pi} \frac{\alpha_{s}}{4\pi} + \cdots$$

$$\gamma_{1}^{NDR}(a) = \frac{\tilde{n}}{18} (2a+1), \qquad \tilde{n} = \sum_{f} n_{f} Q_{f}^{2} \qquad \gamma_{se} = +1$$
A. Sirlin 1982
$$\sum_{a} \sum_{g} \sum_$$

 γ_0

Adapt results from Buras-We Nucl. Phys. B 333, 66 (1990)

Disagree with Czarnecki-Marcia Sirlin 2004 on γ_1 , implying a -0.011% decrease in Δ_R



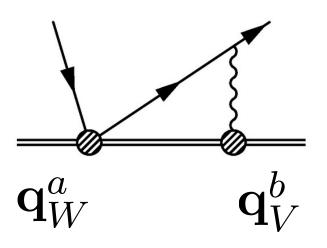
22

LEFT → ChPT matching

Knecht et al, hep-ph/9909284 Descotes-Genon & Moussallam hep-ph/0505077

$$\mathcal{L}_{\text{LEFT}} = \bar{q}_L \vec{l} q_L + \bar{q}_R \vec{r} q_R - e \left(\bar{q}_L \mathbf{q}_L A q_L + \bar{q}_R \mathbf{q}_R A q_R \right) + \left(\bar{e}_L \gamma_\rho \nu_{eL} \bar{q}_L \mathbf{q}_W \gamma^\rho q_L + \text{h.c.} \right) + \dots$$

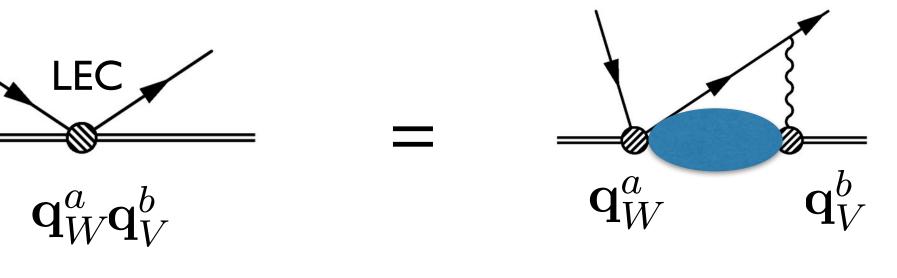
Classical sources $l_{\mu} \bar{r}_{\mu}$



Require that functional derivatives of the LEFT / ChPT generating functionals w.r.t. spurions (q_{L,R} & q_W) coincide

 $\mathbf{q}_L = \mathbf{q}_R = \operatorname{diag}(Q_u, Q_d),$

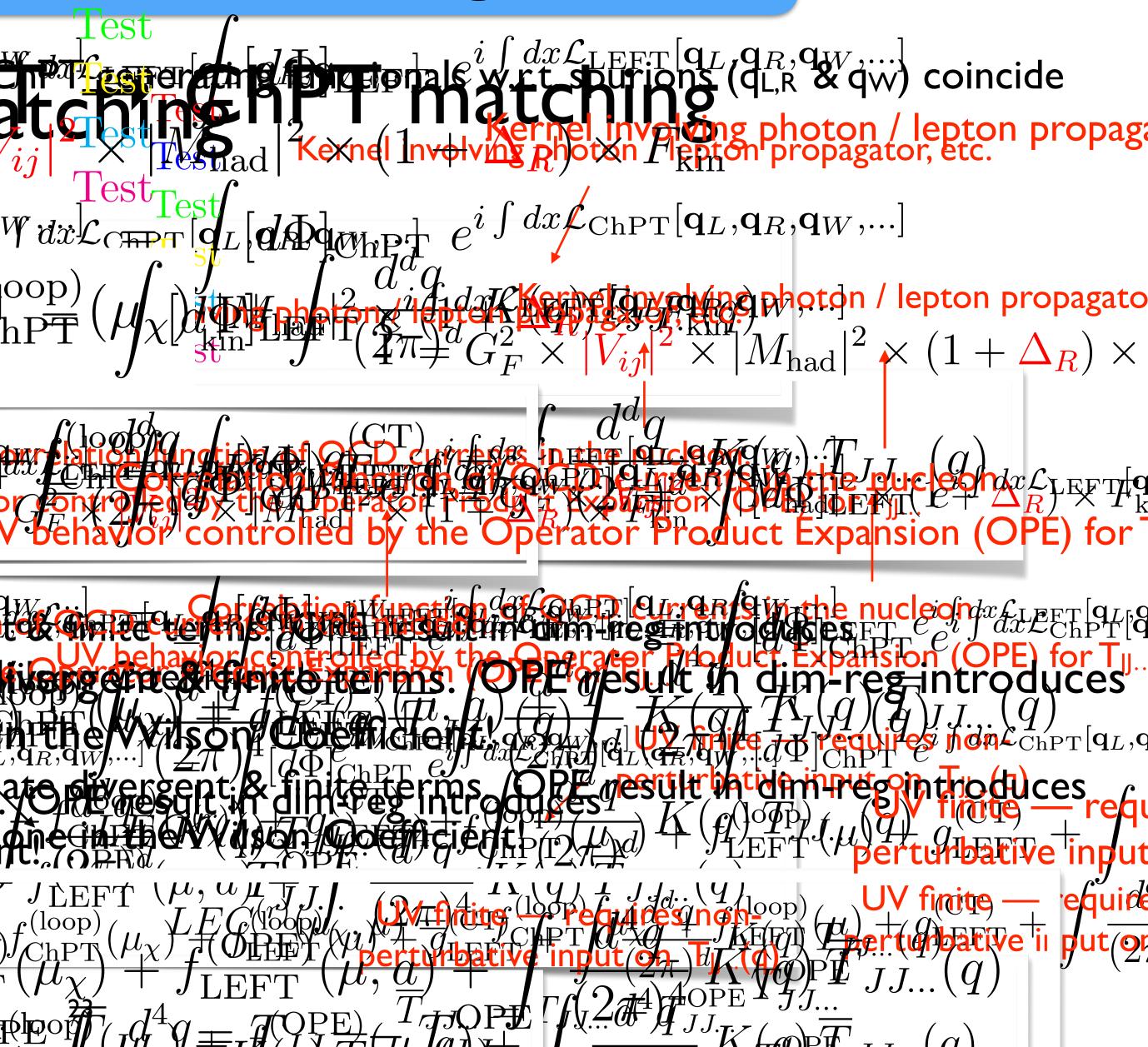
$$\mathbf{q}_W = -2\sqrt{2}\mathbf{G}_{\mathrm{F}}V_{ud}C^r_\beta\,\tau^+$$



LEFT

r = r q(r) r = r q(r)

Hest matching hest him



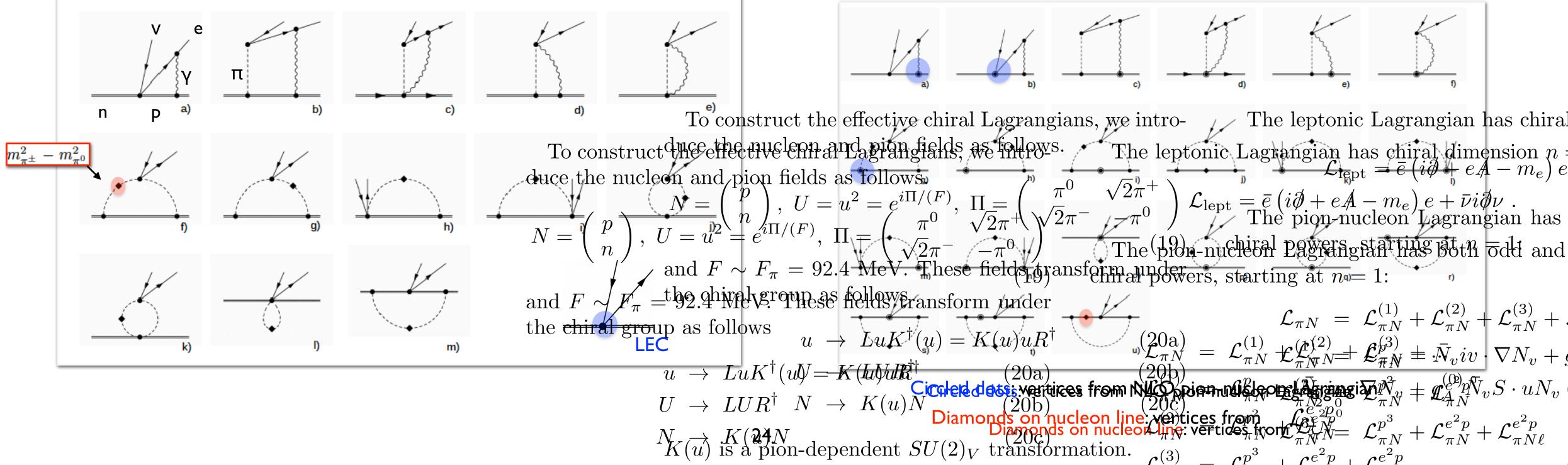
ChPT → *t*xEFT matching

- Identify LECs of #EFT (g_V, g_A, ...) in terms of
 - ChPT LECs themselves \rightarrow contribute to both g_V and g_A
 - ChPT loops involving pions ("integrate out pions") \rightarrow contribute only to g_A

 $\mathcal{L}_{\pi} = -\sqrt{2}G_F V_{ud} \ \bar{e}\gamma_{\mu} P_L \nu_e \ \bar{N} \left(g_V v_{\mu} - 2g_A S_{\mu}\right) \tau^+ N \ + \ \dots$

ChPT $\rightarrow \pi EFT$ matching

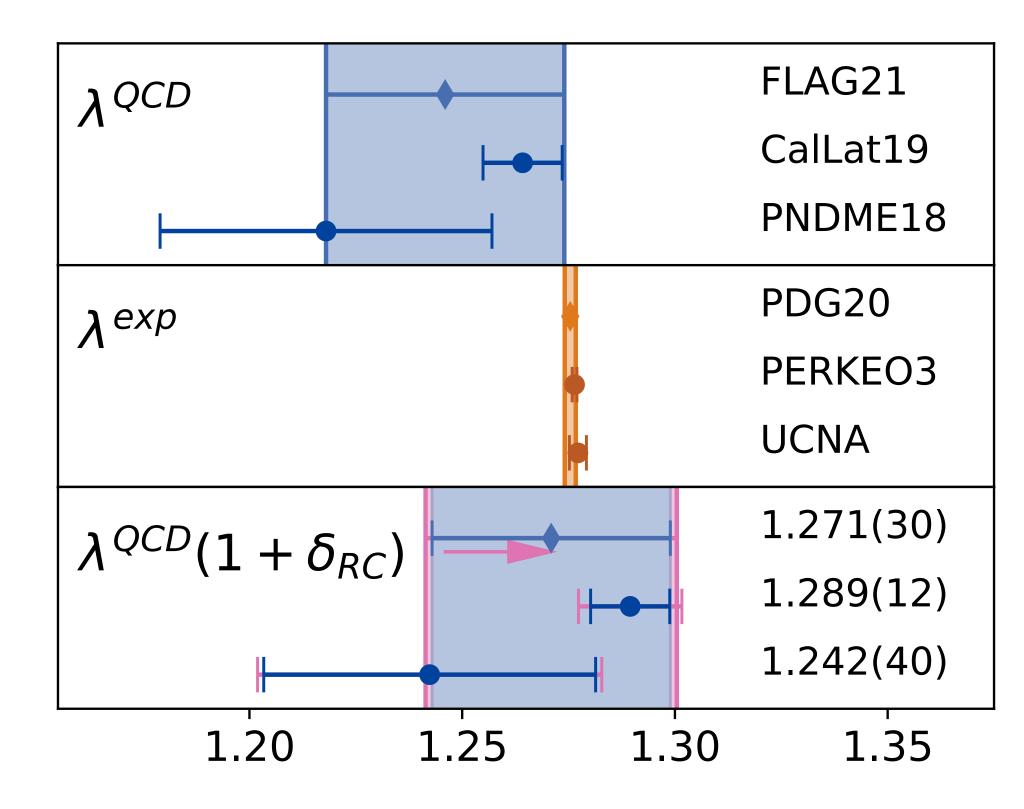
- Identify LECs of #EFT (g_V, g_A, ...) in terms of
 - ChPT LECs themselves \rightarrow contribute to both g_V and g_A
 - ChPT loops involving pions ("integrate out pions") \rightarrow contribute only to g_A
- IPI diagrams contributing to $O(G_F\alpha)$ IPI diagrams contributing to $O(G_F\alpha)$



IPI diagragman contributing to (Order CE))

g_A/g_V to O(α) and O($\alpha \epsilon_X$)

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439



 (g_A/g_V) gets %-level corrections proportional to the pion EM mass splitting (100x larger than previous estimates)

Radiative corrections generally improve agreement between data (neutron decay) and lattice QCD calculations

$$\lambda \equiv \frac{g_A}{g_V}$$

$$\frac{\lambda^{\rm exp}}{\lambda^{\rm QCD}} = 1 + \delta_{\rm RC}$$

$$\delta_{RC} \simeq (2.0 \pm 0.6 \pm ??)\%$$

Scale variation + Unknown LECs

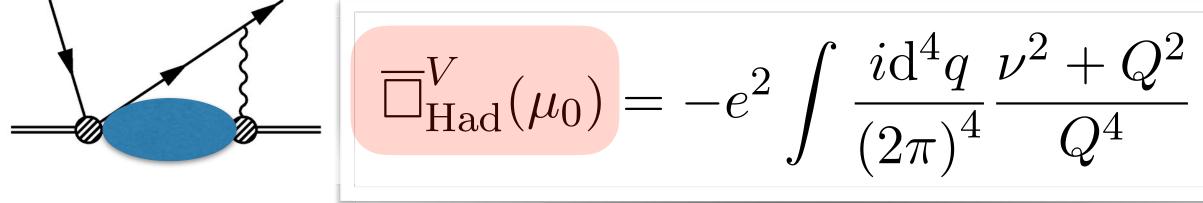
To further sharpen the test, need higher precision in $(g_A)^{QCD}$ and δ_{RC}

knownLECs

VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306. 03138, PRD

$$g_{V}(\mu_{\chi}) = \overline{C}_{\beta}^{r}(\mu) \left[1 + \frac{\Box_{\text{Had}}^{V}(\mu_{0})}{2\pi} - \frac{\alpha(\mu_{\chi})}{2\pi} \left(\frac{5}{8} + \frac{3}{4} \ln \frac{\mu_{\chi}^{2}}{\mu_{0}^{2}} + \left(1 - \frac{\alpha_{s}}{4\pi} \right) \ln \frac{\mu_{0}^{2}}{\mu^{2}} \right) \right]$$

$$\overline{\Box}_{
m Had}^V(\mu_0)$$
 is the u

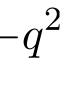


$$T_{VA,0}^{\mu\nu} = i\varepsilon^{\mu\nu\sigma\rho}q_{\rho}v_{\sigma}\frac{T_{3}}{4m_{N}\nu} + \cdots \qquad T_{VV(A),0}^{\mu\nu}(q,v) = \frac{\tau_{ij}^{a}\delta^{\sigma'\sigma}}{12}\frac{i}{6}\int \mathrm{d}^{d}x\,e^{iq\cdot x}\langle N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}\left(\gamma_{5}\right)\tau^{a}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\nu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\mu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{\mu}q\left(x\right)\bar{q}\gamma^{\mu}q(0)\right]|N(k,\sigma',j)|T\left[\bar{q}\gamma^{$$

Vector coupling gv

usual 'box' up to $Q^2 \sim (\mu_0)^2$

$$\begin{bmatrix} T_3(\nu, Q^2) \\ 2m_N\nu \end{bmatrix} - \frac{2}{3} \frac{1}{Q^2 + \mu_0^2} \left(1 - \frac{\alpha_s(\mu_0^2)}{\pi} \right) \end{bmatrix} \qquad Q^2 = -\frac{1}{2} \frac{1}{Q^2 + \mu_0^2} \left(1 - \frac{\alpha_s(\mu_0^2)}{\pi} \right) = 0$$



VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306.03138, PRD

$$g_{V}(\mu_{\chi}) = \overline{C}_{\beta}^{r}(\mu) \left[1 + \overline{\Box}_{\text{Had}}^{V}(\mu_{0}) - \frac{\alpha(\mu_{\chi})}{2\pi} \left(\frac{5}{8} + \frac{3}{4} \ln \frac{\mu_{\chi}^{2}}{\mu_{0}^{2}} + \left(1 - \frac{\alpha_{s}}{4\pi} \right) \ln \frac{\mu_{0}^{2}}{\mu^{2}} \right) \right]$$

- Use non-perturbative input on T_3 from dispersive analysis or LQCD
- No dependence on scheme, μ and μ_0 (up to higher perturbative orders) \bullet
- Dependence on μ_X canceled by loops in pion-less EFT \bullet

Vector coupling gv

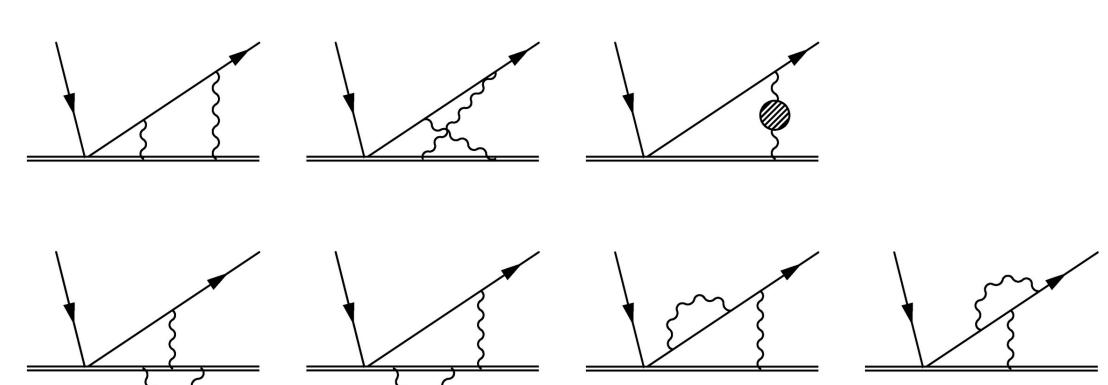
 $\overline{\Box}_{\text{Had}}^{V}(\mu_0)$ is the usual 'box' up to Q²~(μ_0)²

Seng et al. 1807.10197, 2308.16755

• For $\mu_{X} \sim \mu \sim \mu_{0} \sim 1$ GeV all large logs are in the NLO Wilson coefficient $\overline{C}_{\beta}^{r}(\mu)$

 $\mathrm{d}g_{V}\left(\mu_{\chi}\right) =$ μ_{χ} $d\mu_{\chi}$ $\gamma(\alpha) =$

Adapt results from V. Gimenez Nucl. Phys. B 375, 582 (1992), Ji, Ramsey-Musolf Phys. Lett. B 257, 409 (1991)



Evolution of g_V from Λ_X to m_e

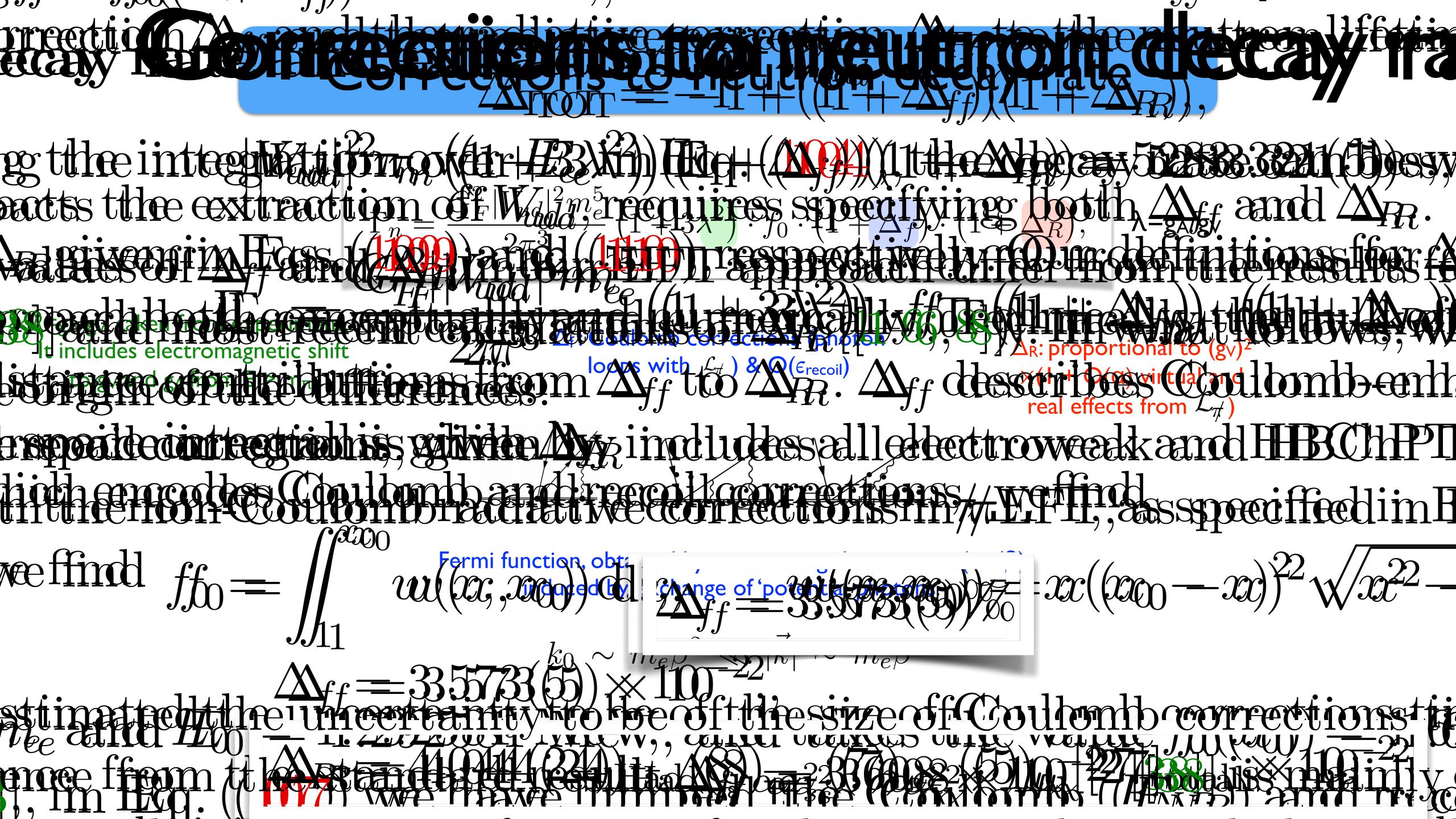
$$\gamma(\alpha) g_V(\mu_{\chi}), \qquad \qquad \tilde{\gamma}_0 = -\frac{3}{4}$$

$$\tilde{\gamma}_0 \frac{\alpha}{\pi} + \tilde{\gamma}_1 \left(\frac{\alpha}{\pi}\right)^2 + \cdots \qquad \qquad \tilde{\gamma}_1 = \frac{5\tilde{n}}{24} + \frac{5}{32} - \frac{\pi^2}{6}$$

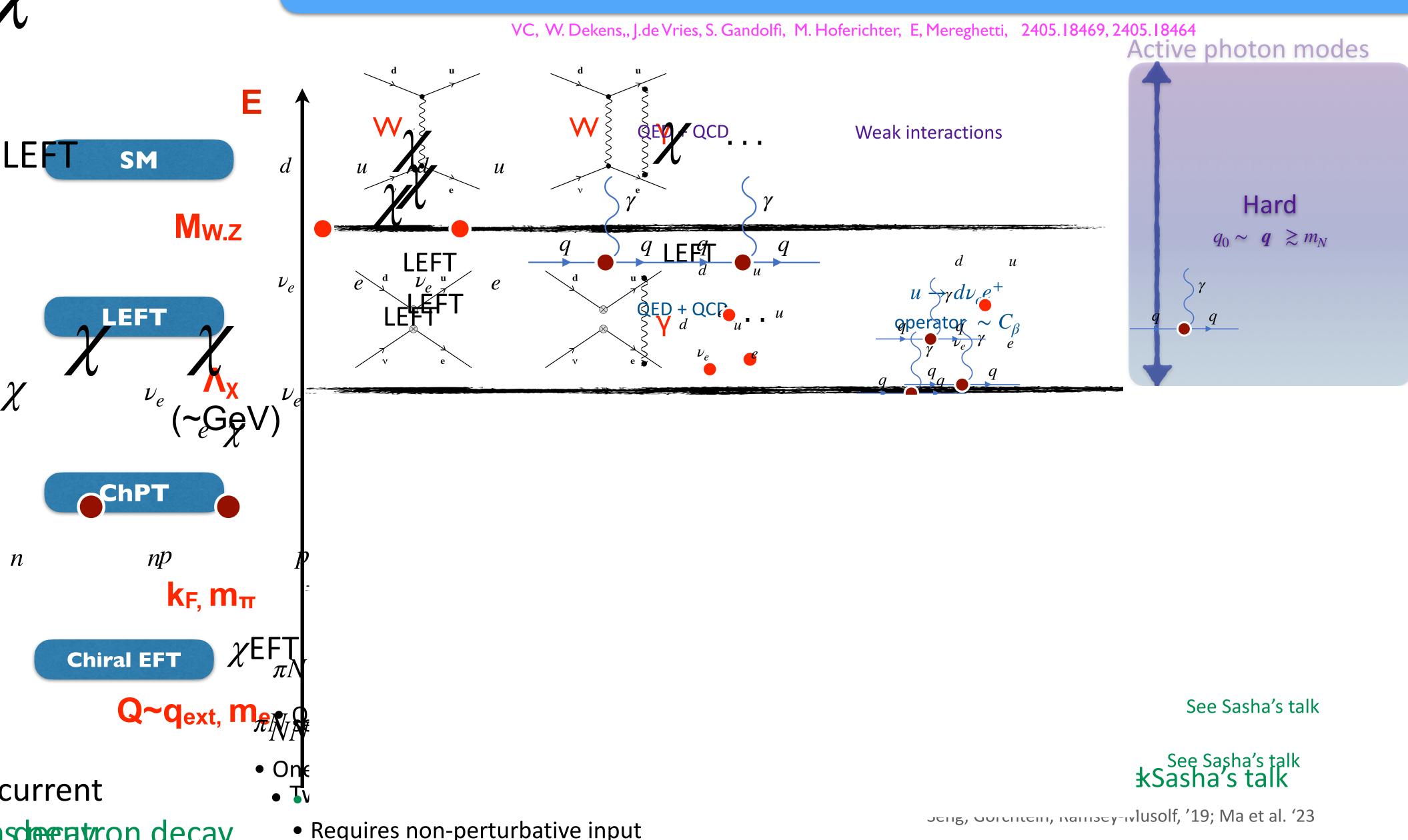
Parametrically large 2-loop anomalous dimension

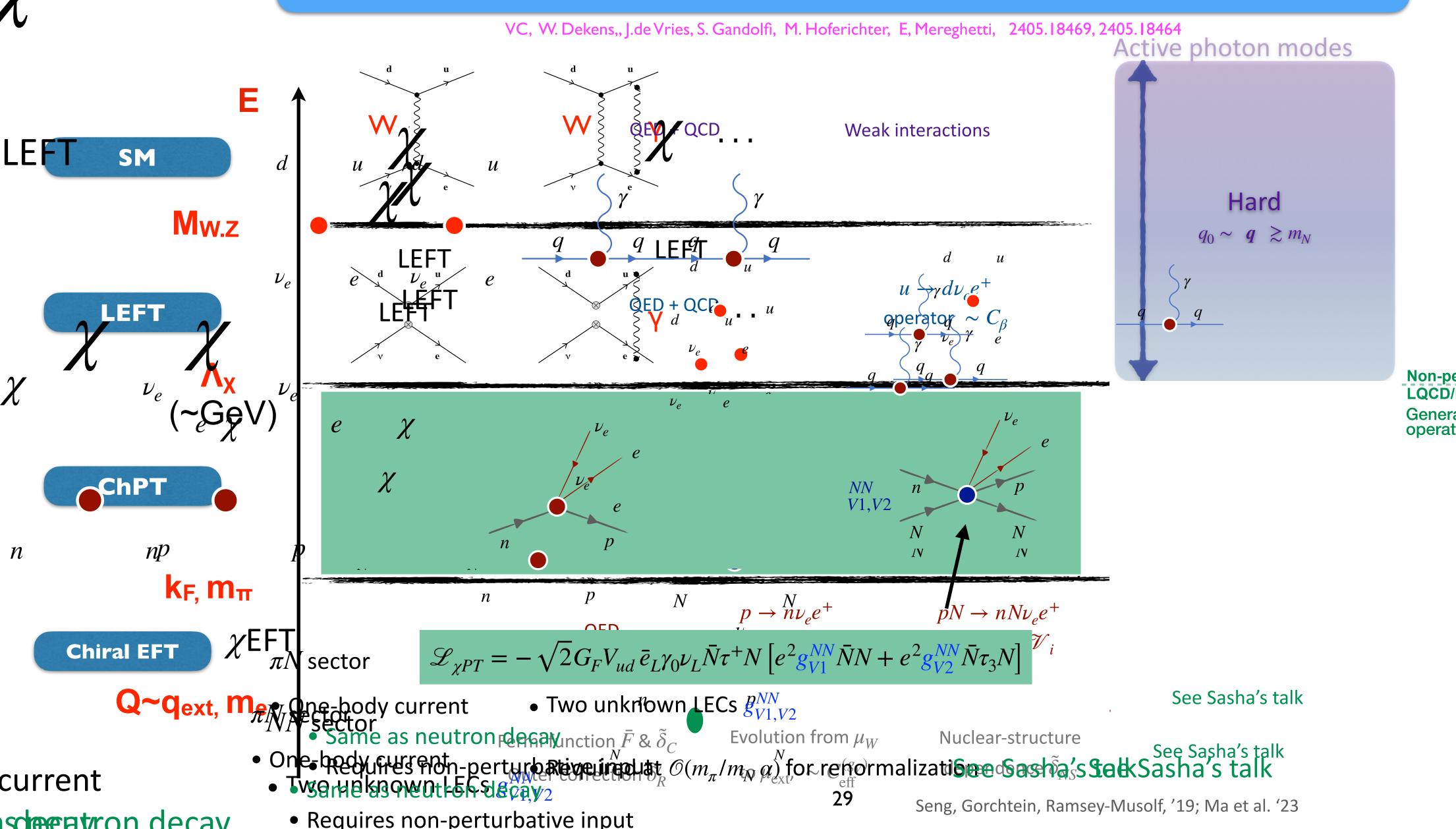
$$\frac{g_V(m_e)}{g_V(m_p)}\Big|_{\text{LO}} = 1.01308,$$
$$\frac{g_V(m_e)}{g_V(m_p)}\Big|_{\text{LL}} = 1.01325,$$
$$\frac{g_V(m_e)}{g_V(m_p)}\Big|_{\text{NLL}} = 1.01330.$$

NLL (α^2) RGEs induces shift to Δ_R of + 0.01%

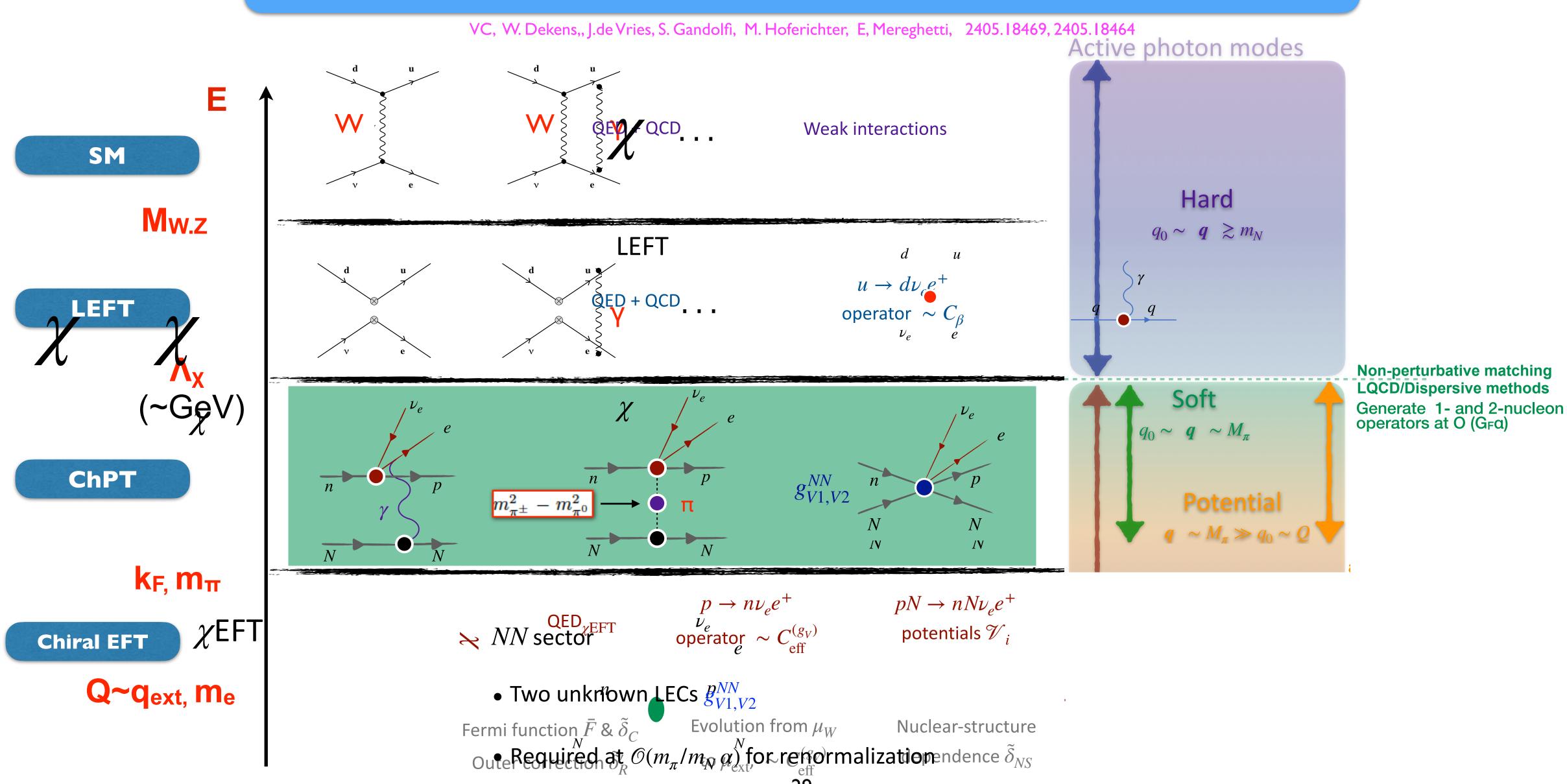




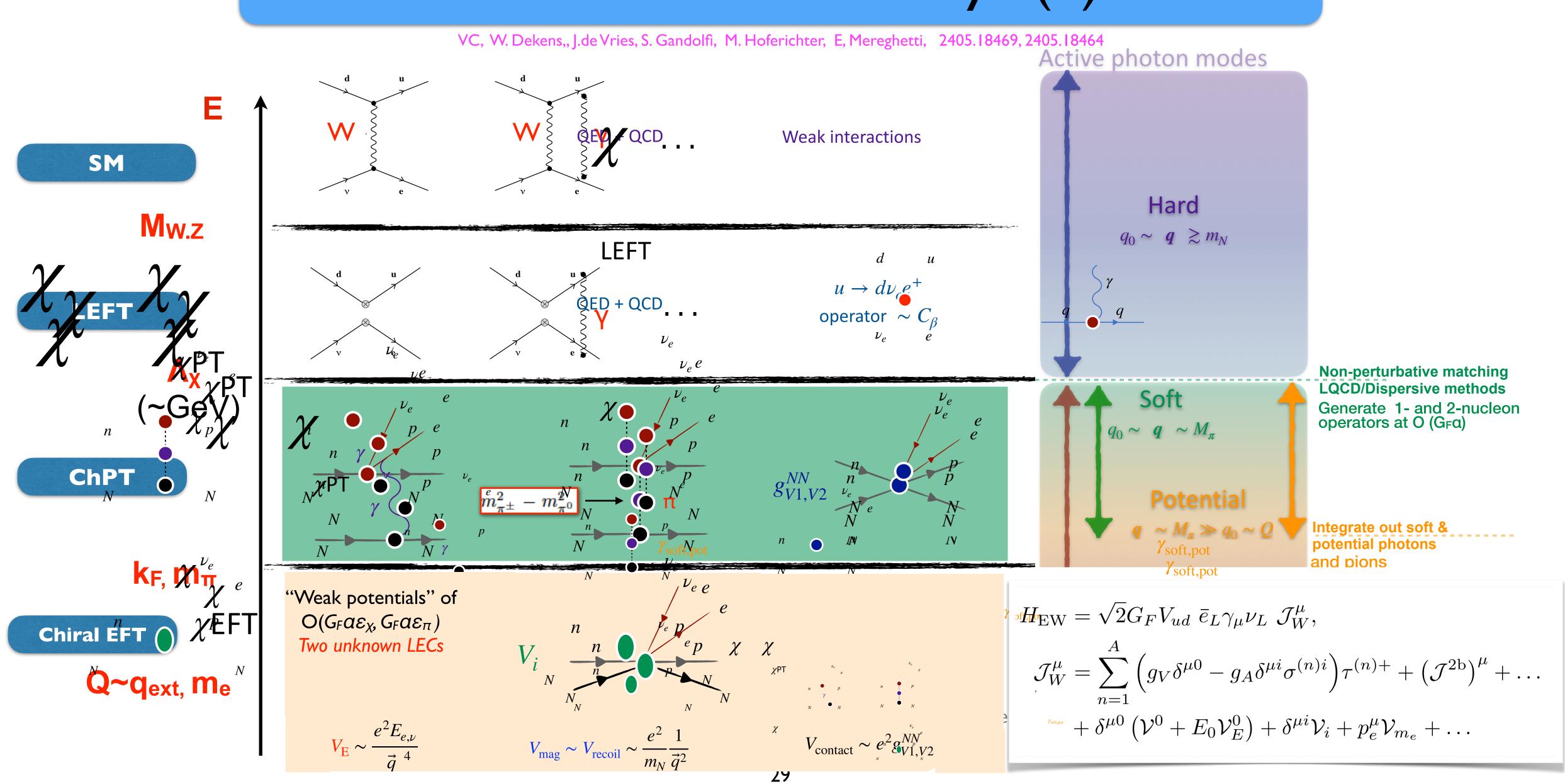


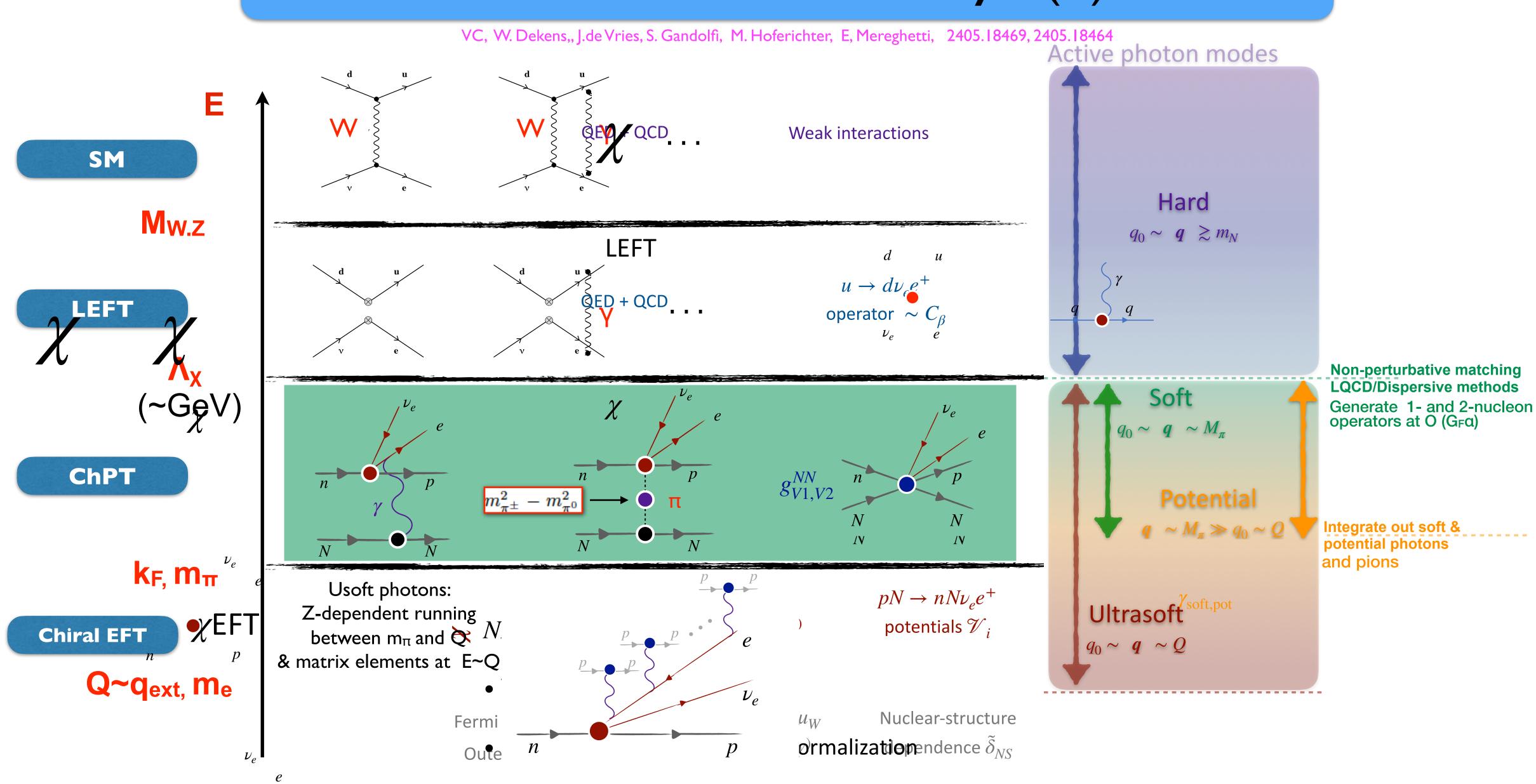


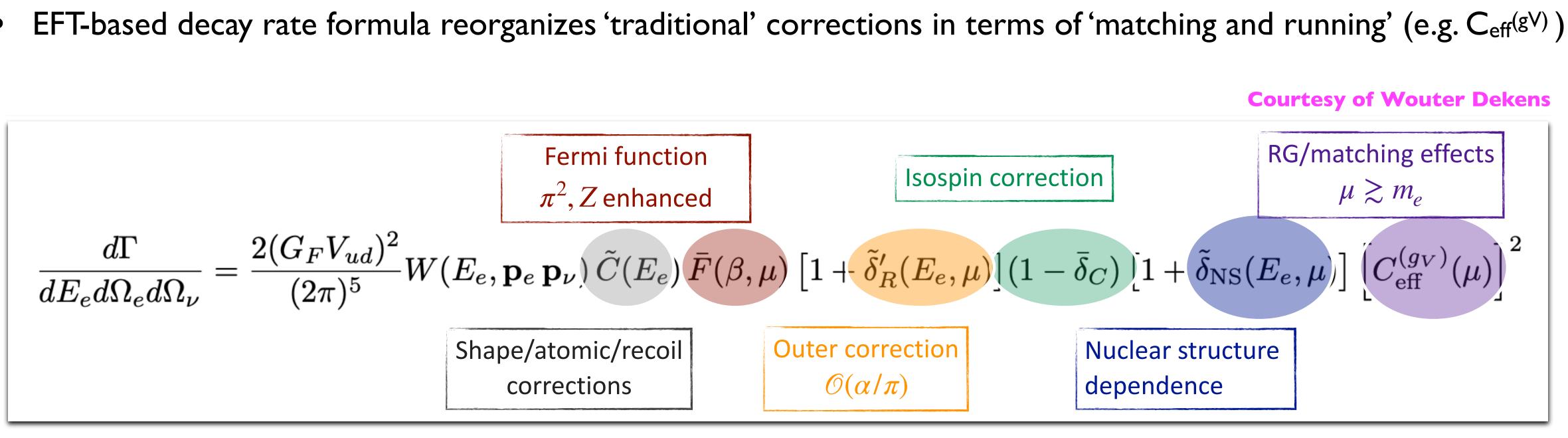
Non-perturbative matching LQCD/Dispersive methods Generate 1- and 2-nucleon operators at O ($G_F\alpha$)



29

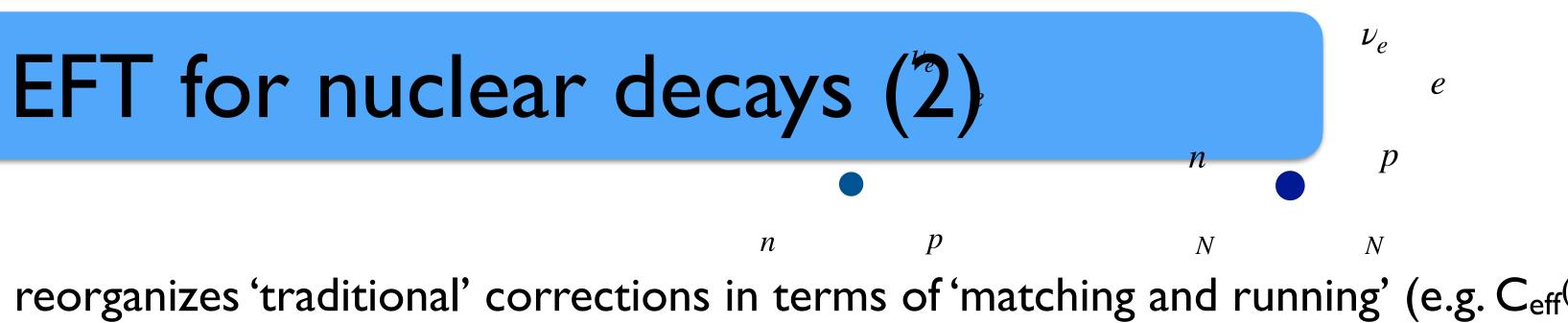




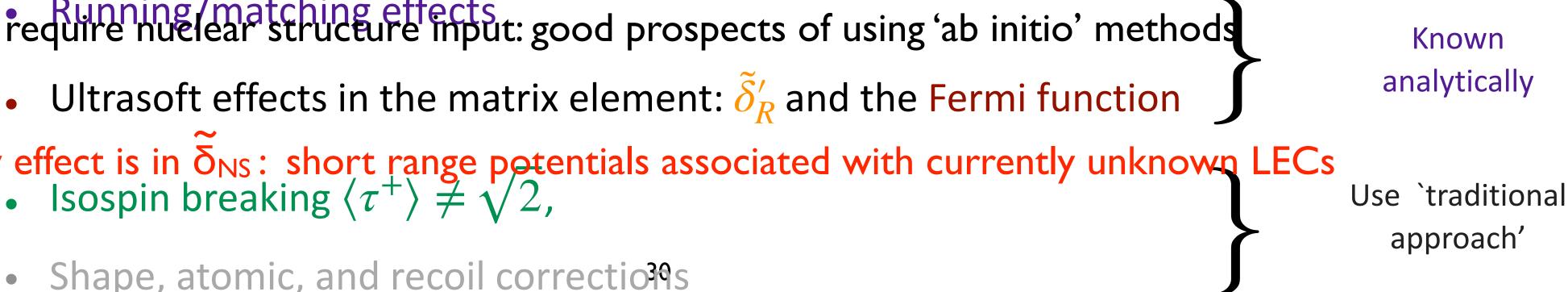


Required input

- $\widetilde{C}(E_e)$, $\widetilde{\delta}_C$, $\widetilde{\delta}_{NS}$ require nuclear structure input: good prospects of using 'ab initio' methods
- Significant new effect is in δ_{NS} : short range potentials associated with currently unknown LECs Isospin breaking $\langle \tau^+ \rangle \neq \sqrt{2}$,
 - Shape, atomic, and recoil corrections



Wilkinson '90,'93; Hardy, Towner '04,'08,'20; Hayen et al. '17;



• 1 Exploratory $\frac{1}{3} \text{full} + 0 \rightarrow 14 \text{N}$ decay (Quantum Monte Carlo calculation of relevant matrix element)

$$V_{ud} = 0.97364(12)_{g_V}(10)_{\exp}(2)$$

Compatible with traditional approach \bullet

 $(22)_{\overline{f}}(13)_{\delta_{NS}^{\text{non-LEC}}}(44)_{\delta_{NS}^{\text{LEC}}}(12)_{\delta_{c}}[55]_{\text{total}}$

Hardy & Towner, '20



EFT for nuc

• 1 f ratory stud in 140 \rightarrow 14N decay (Quantum M

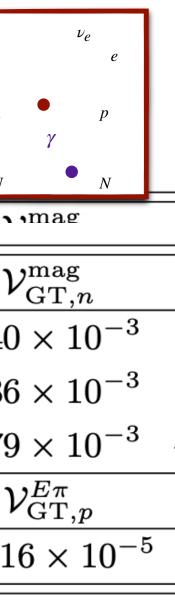
$$V_{ud} = 0.97364(12)_{g_V}(10)_{\exp}(2)$$

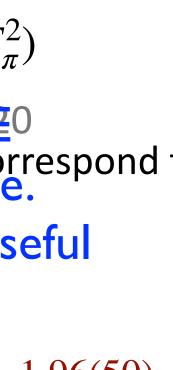
Compatible with traditional approach

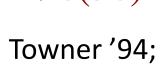
	U	\rightarrow IN	
clear decays (3)	inder	endent	n
e	د(0)	mag	
Acusta Caula adlaulatiana af ualaurantu usatu	$\delta_{ m NS}^{(0)}$	$\mathcal{V}^{ ext{mag}}_{ ext{GT},p}$	\mathcal{V}
1onte Carlo calculation of relevant matr	⁶ Be	-4.07×10^{-3}	0.40
	^{14}O	-4.96×10^{-3}	1.86
		-0.58×10^{-3}	2.79
$(22)_{\overline{f}}(13)_{\delta_{NS}^{\text{non-LEC}}}(44)_{\delta_{NS}^{\text{LEC}}}(12)_{\delta_{c}}[55]_{\text{total}}$	$\overline{\delta^E_{ m NS}}$	$rac{\mathcal{V}^E_{\mathrm{F},p}}{2.07 imes10^{-3}}$	\mathcal{V}
	^{14}O	2.07×10^{-3}	-2.16
Largest uncertainty. Assume	es g	$NN_{V1,V2} = 1/(4n)$	$m_N F_{\pi}^2$

LECs can be obtained by fitting data one MAREO calculations for several isotopes become available. Dispersive methods and lattice QCD can also be useful

• Similar result: $\delta_{NS,B} = -1.96(50)$ ·

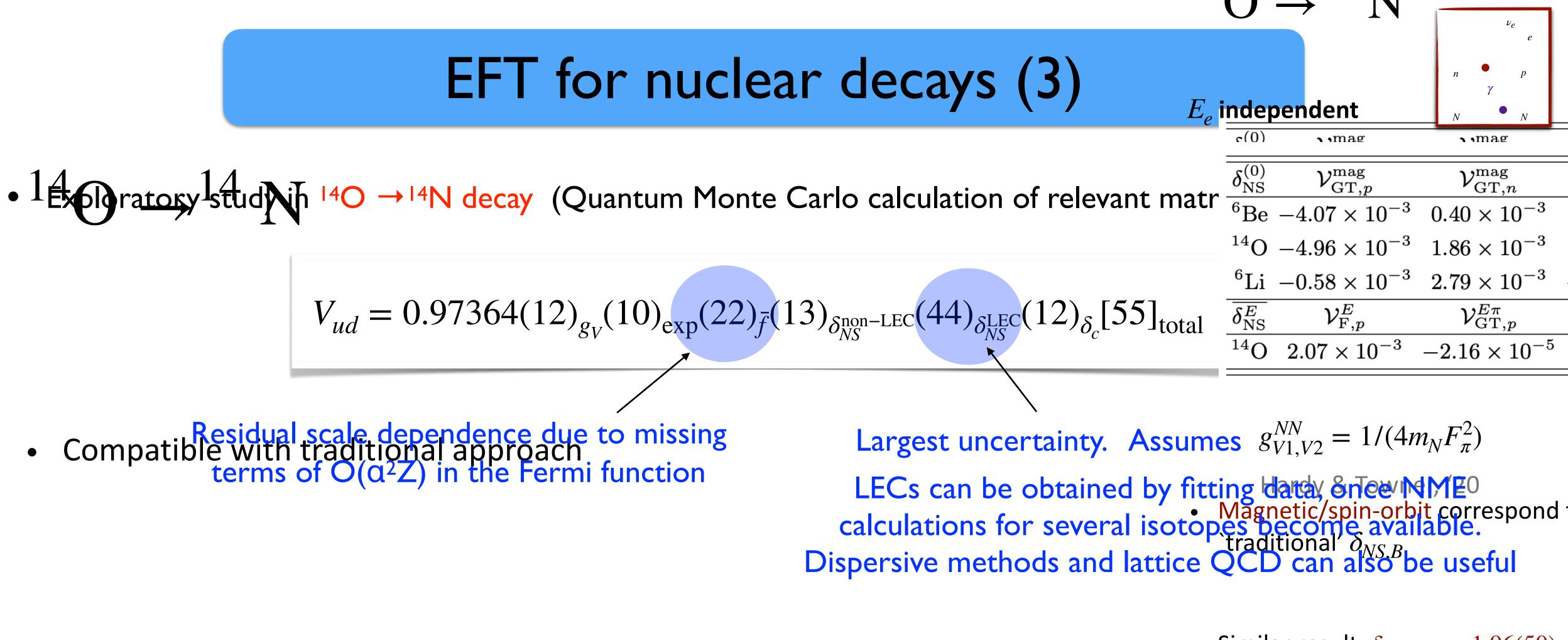




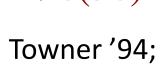


$$V_{ud} = 0.97364(12)_{g_V}(10)_{\exp}(10)_{exp}$$

Compatible with traditional approach terms of O(α²Z) in the Fermi function



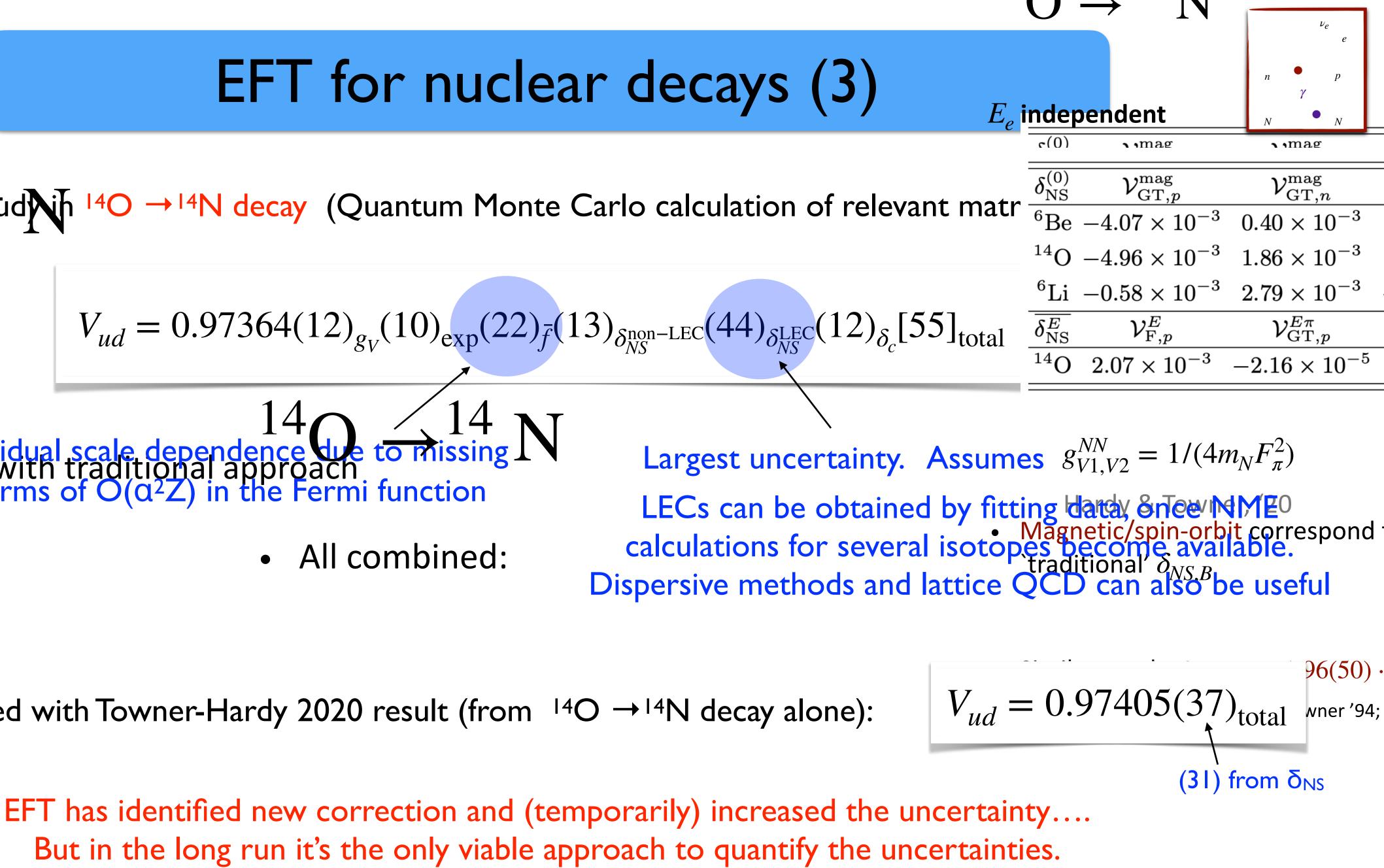
• Similar result: $\delta_{NS,B} = -1.96(50)$ ·

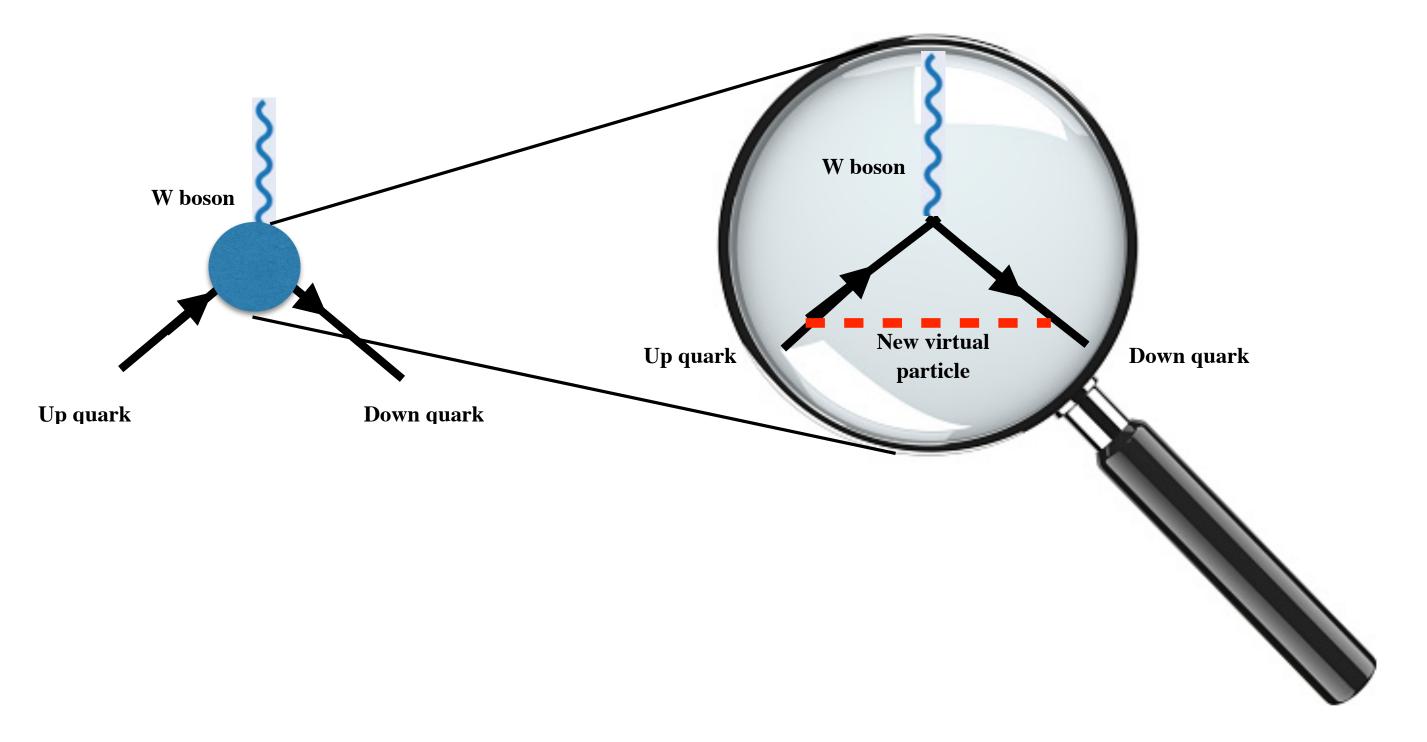


• $I_{\text{Exploratory}}$ stud in 140 \rightarrow 14N decay (Quantum Monte Carlo calculation of relevant matr

$$V_{ud} = 0.97364(12)_{g_V}(10)_{exp}(10)_{g_V}(10)_{exp}(10)_{ex}(10)_{ex}(10)_{ex}(10)_{ex}(10)_{ex}(10)_{ex}(10)_{ex}(10)_$$

To be compared with Towner-Hardy 2020 result (from ${}^{14}O \rightarrow {}^{14}N$ decay alone):

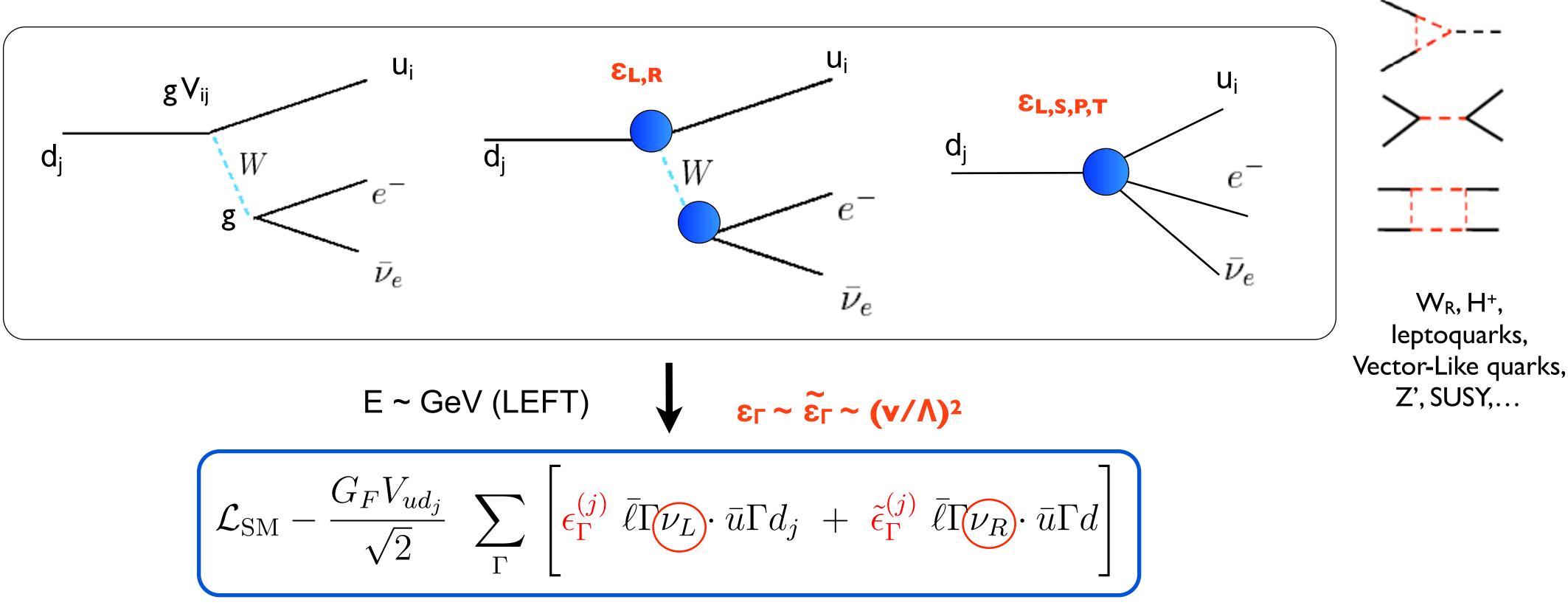




VC, A. Crivellin, M. Hoferichter, M. Moulson, 2208.11707, PLB VC, W. Dekens, J. deVries, E. Mereghetti, T. Tong 2204.08440, PRD VC, W. Dekens, J. de Vries, E. Mereghetti, T. Tong, 2311.00021, JHEP

Implications for new physics

Semileptonic processes beyond the SM

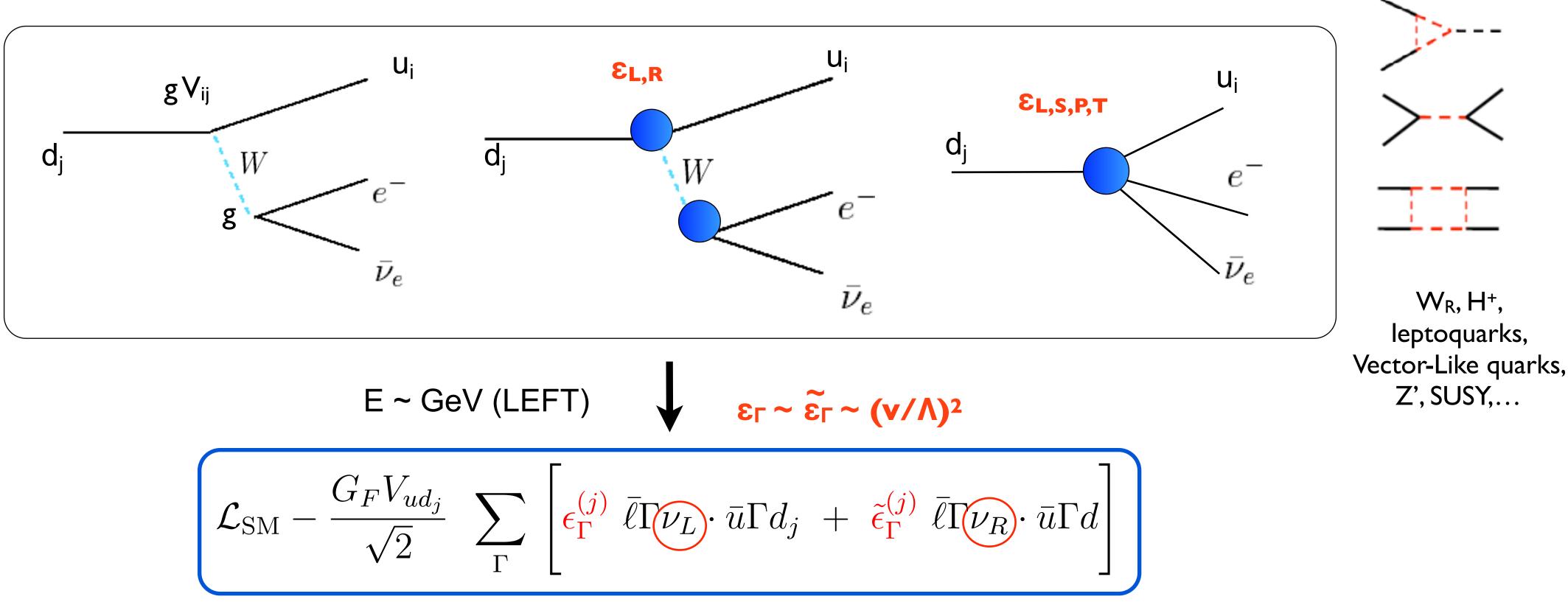


$$\mathcal{L}_{\rm SM} - \frac{G_F V_{ud_j}}{\sqrt{2}} \sum_{\Gamma} \left[\epsilon_{\Gamma}^{(j)} \right]$$

BSM effects parameterized by 10(ud) + 10(us) effective couplings at E ~ GeV They map into vertex corrections and 4-Fermion interactions above the EW scale

 $\Gamma = L, R, S, P, T$

Semileptonic processes beyond the SM

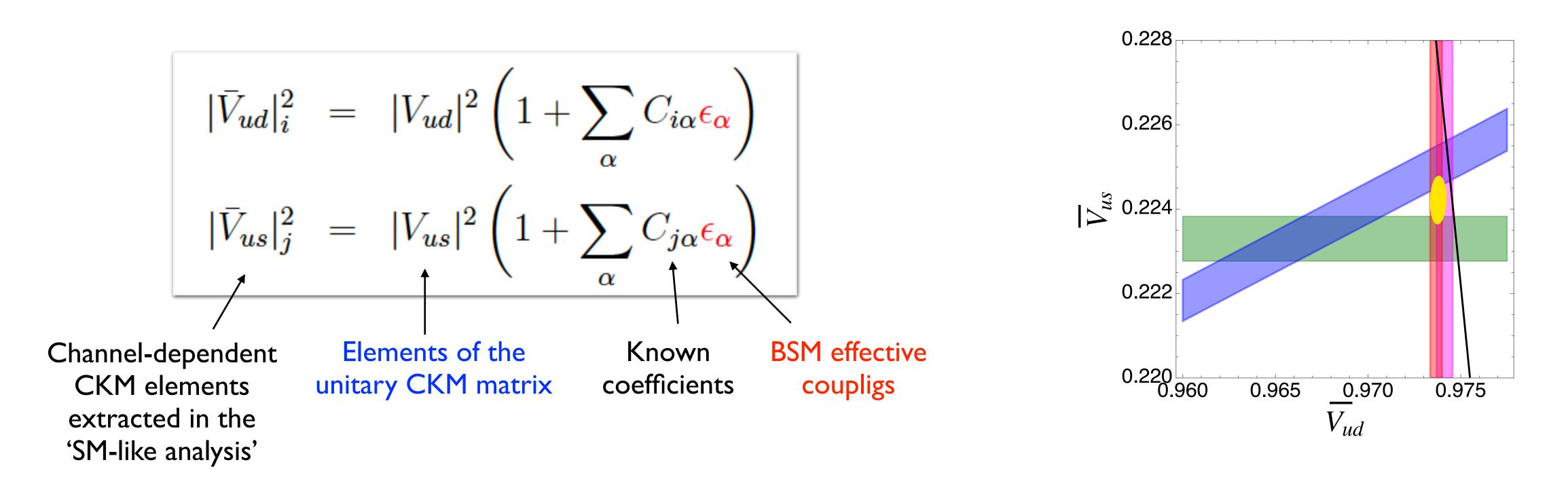


$$\mathcal{L}_{\rm SM} - \frac{G_F V_{ud_j}}{\sqrt{2}} \sum_{\Gamma} \left[\epsilon_{\Gamma}^{(j)} \right]$$

 $\Gamma = L, R, S, P, T$

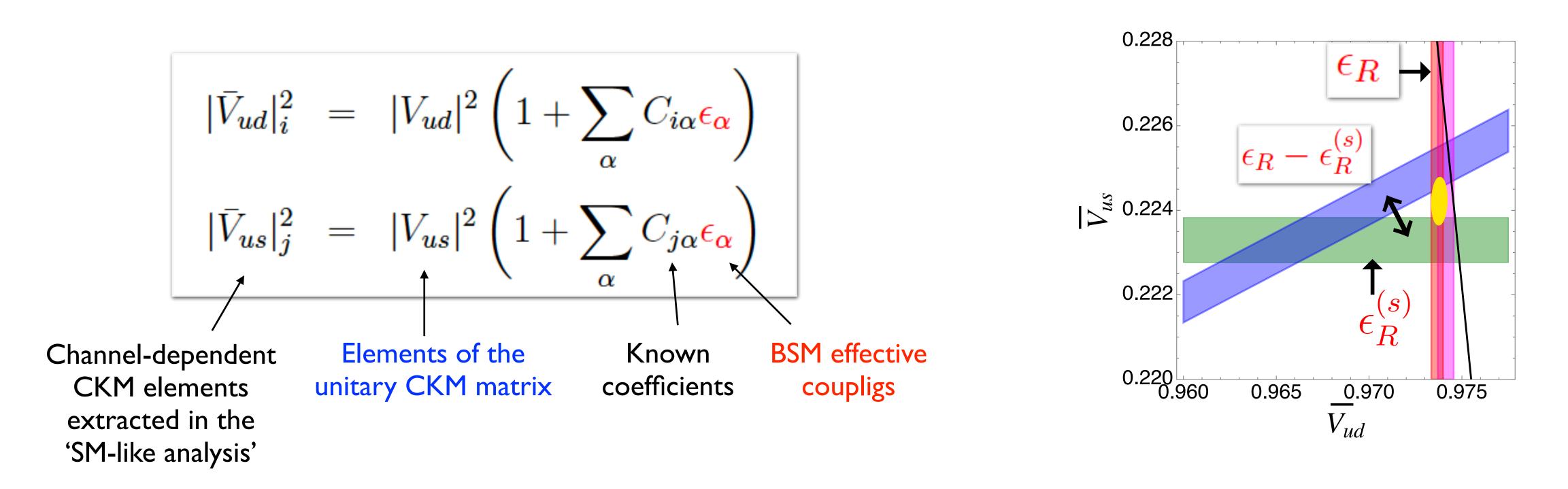
 Δ_{CKM} tension confirmed: points to specific new physics Δ_{CKM} tension removed: strong constraints, complementary to traditional 'precision electroweak observables'

Corrections to V_{ud} and V_{us}



Find set of ϵ 's so that V_{ud} and V_{us} bands meet on the unitarity circle

Corrections to V_{ud} and V_{us}



Find set of ε 's so that V_{ud} and V_{us} bands meet on the unitarity circle

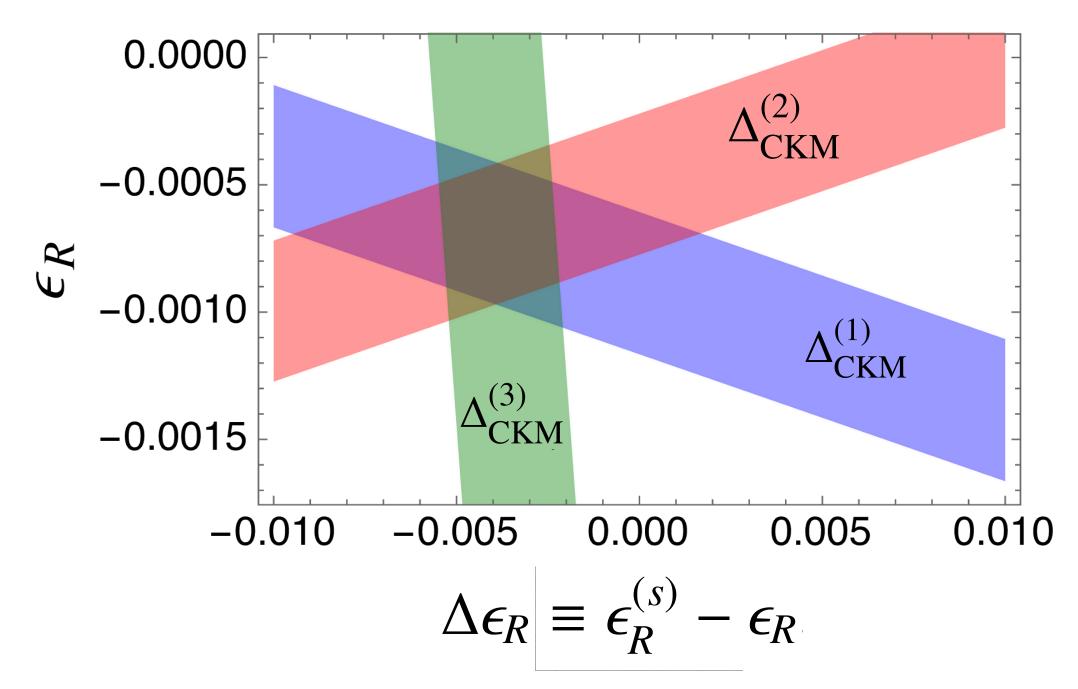
Alioli et al 1703.04751 **Grossman-Passemar-Schacht** 1911.07821 **VC-Crivellin-Hoferichter-**Moulson 2208.11707 VC, W. Dekens, J. De Vries, E. Mereghetti, T. Tong, 2311.00021

- Simplest 'solution': right-handed (V+A) quark currents
- CKM elements from vector (axial) channels are shifted by $|+\varepsilon_R|$ ($|-\varepsilon_R|$).

 V_{us}/V_{ud} , V_{ud} and V_{us} shift in correlated way, can resolve all tensions!

Unveiling R-handed quark currents?

VC-Crivellin-Hoferichter-Moulson 2208.11707



- Preferred ranges are not in conflict with constraints from other low-E probes

$$\Delta_{CKM}^{(1)} = |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1$$

$$= -1.76(56) \times 10^{-3}$$

$$\Delta_{CKM}^{(2)} = |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 2}/\pi_{\ell 2},\beta}|^{2} - 1$$

$$= -0.98(58) \times 10^{-3}$$

$$\Delta_{CKM}^{(3)} = |V_{ud}^{K_{\ell 2}/\pi_{\ell 2},K_{\ell 3}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1$$

$$= -1.64(63) \times 10^{-2}$$

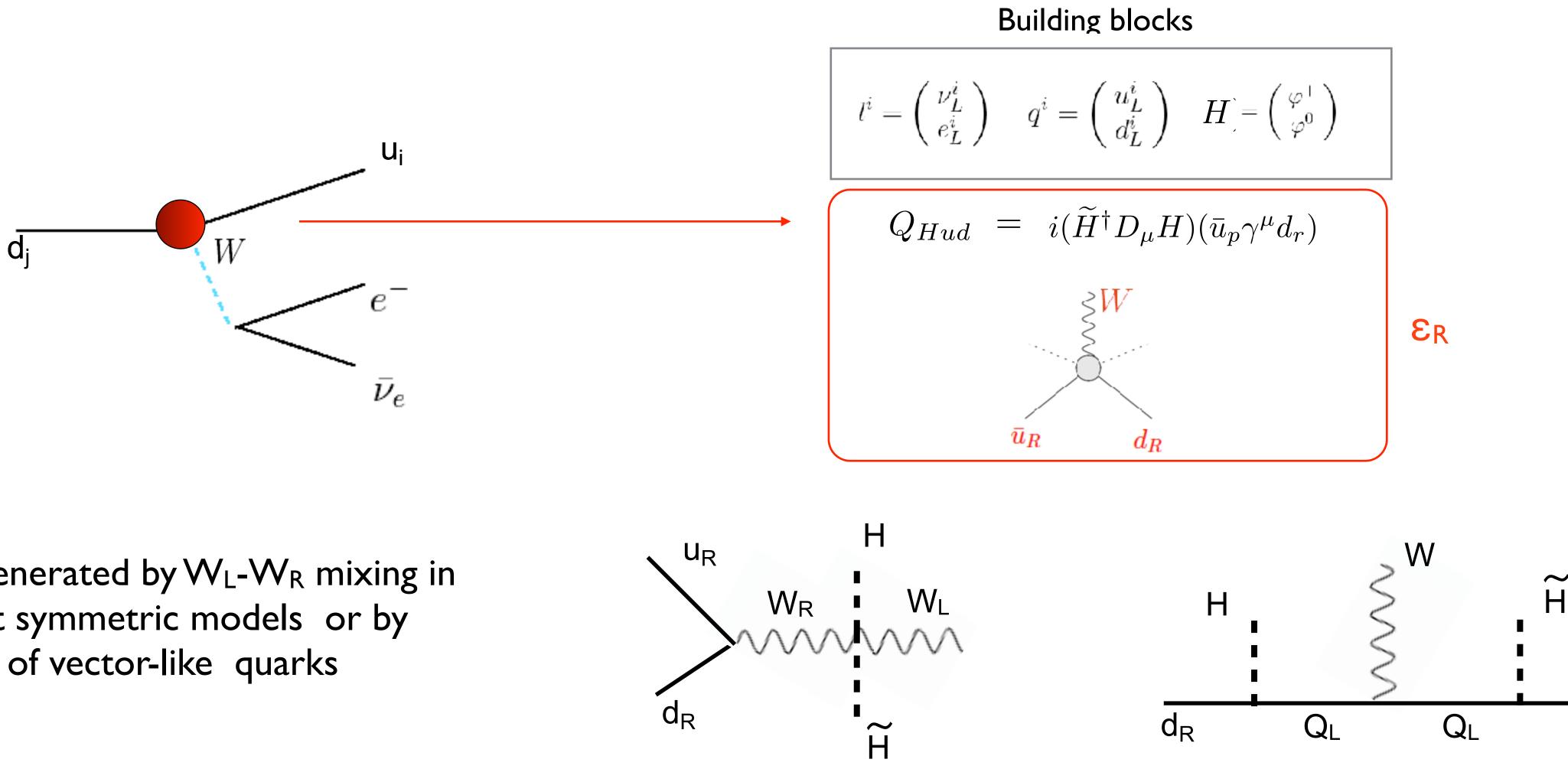
$$\epsilon_{R} = -0.69(27) \times 10^{-3}$$

$$\Delta\epsilon_{R} = -3.9(1.6) \times 10^{-3}$$

Does the R-handed current explanation survive after taking into account high energy data?

High scale origin of ε_R

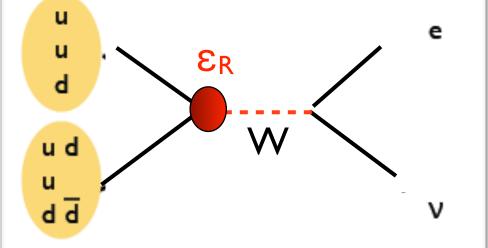
 ϵ_R originates from SU(2)xU(1) invariant vertex corrections in the SM-EFT

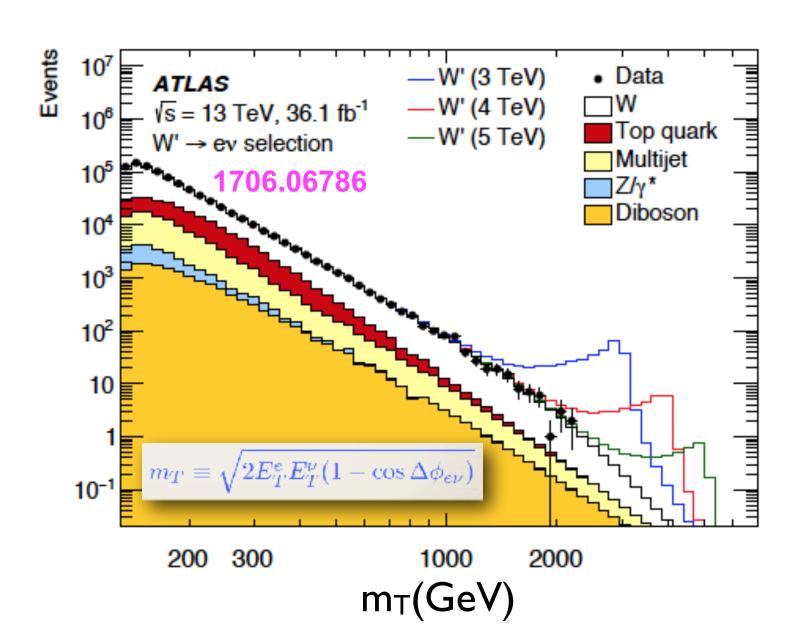


Can be generated by W_L - W_R mixing in Left-Right symmetric models or by exchange of vector-like quarks

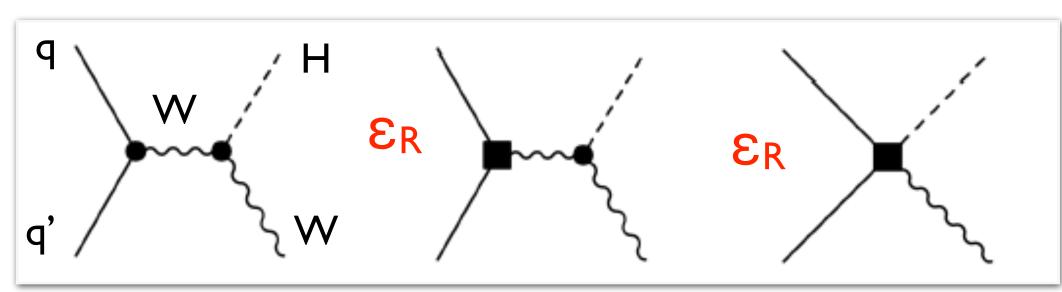
Belfatto-Trifinopoulos 2302.14097

High Energy constraints on ε_R are weak





Contributes to associated Higgs + W production at the LHC



S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

Contribute tp $pp \rightarrow ev+X$ at the LHC

New contribution has same shape as the SMW exchange \rightarrow weak sensitivity

VC, Graesser, Gonzalez-Alonso 1210.4553 Alioli-Dekens-Girard-Mereghetti 1804.07407 Gupta et al. 1806.09006

....

Current LHC results allow for to $\varepsilon_R \sim 5\%$

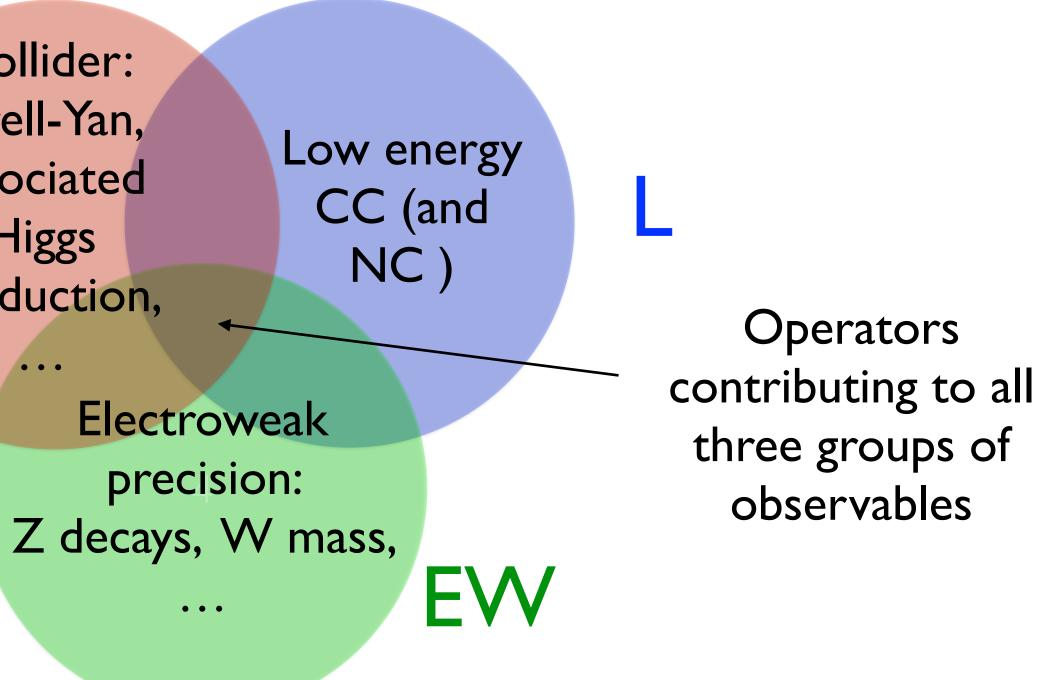
A consistent analysis of beta decays in the SM-EFT requires including electroweak and collider data lacksquare

> Collider: Drell-Yan, associated Higgs production,

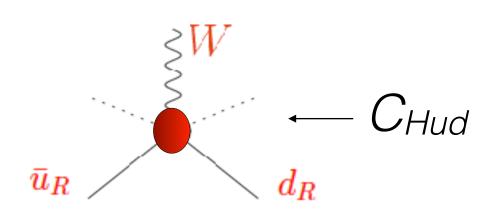
> > • • •

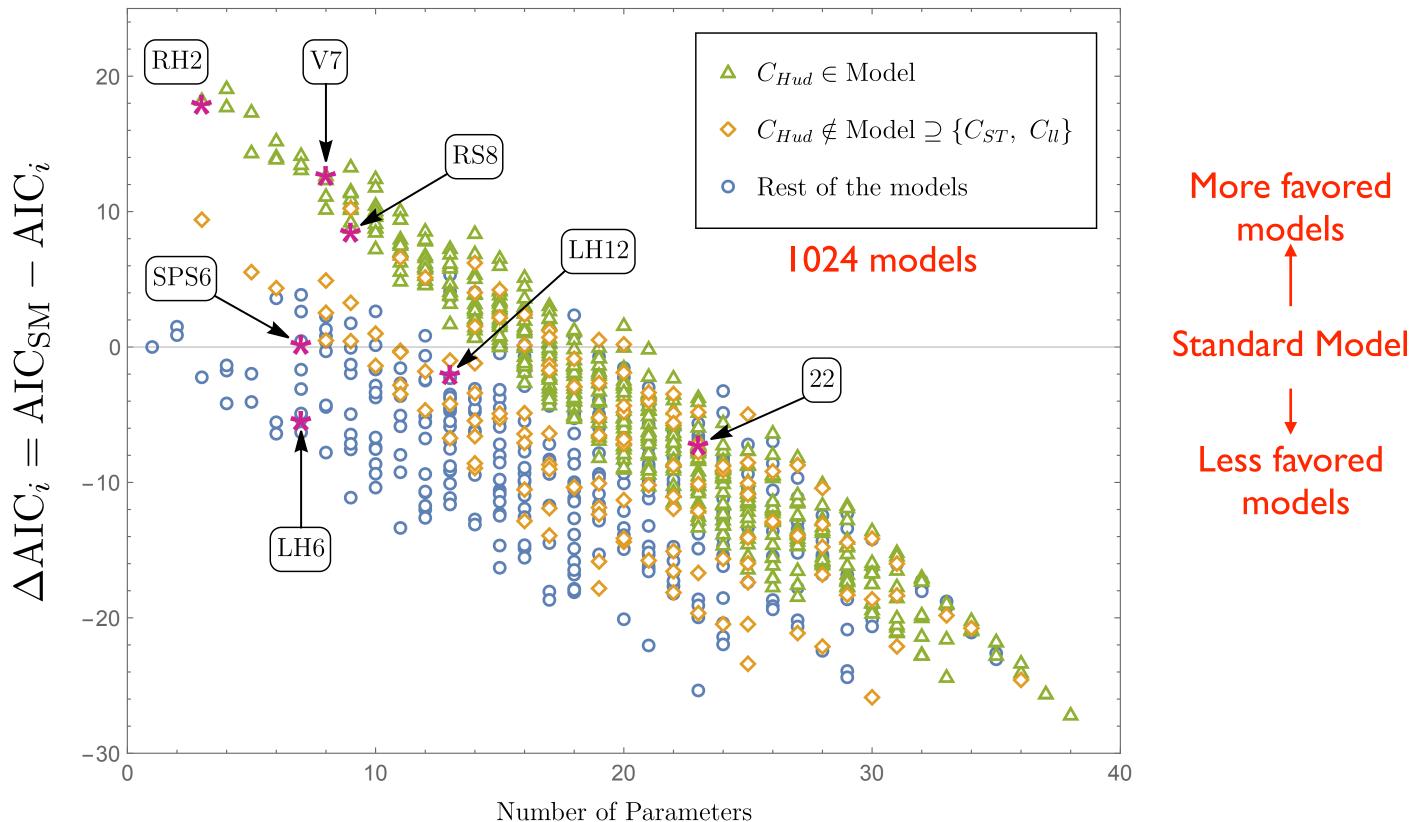
CLEW analysis with no assumption about flavor symmetry requires 37 effective couplings

Global analysis (1)



- Performed 'CLEWed' analysis within SMEFT. Scanned model space by 'turning on' certain classes of effective couplings
- Akaike Information Criterion [AIC = 2k - ln(L)) favors models with Right-Handed Charged Currents of quarks (V+A)





Global analysis (2)

VC, W. Dekens, J. De Vries, E. Mereghetti, T. Tong, JHEP 03 (24) 33, arXiv: 2311.00021

20

 AIC_i

ICSM

 $\Delta \mathrm{AIC}_i$

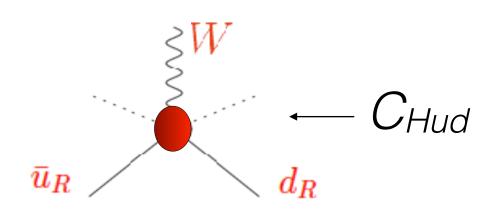
-10

-20

-30

0

- Performed 'CLEWed' analysis within SMEFT. Scanned model space by 'turning on' certain classes of effective couplings
- Akaike Information Criterion [AIC = 2k - ln(L)) favors models with Right-Handed Charged Currents of quarks (V+A)

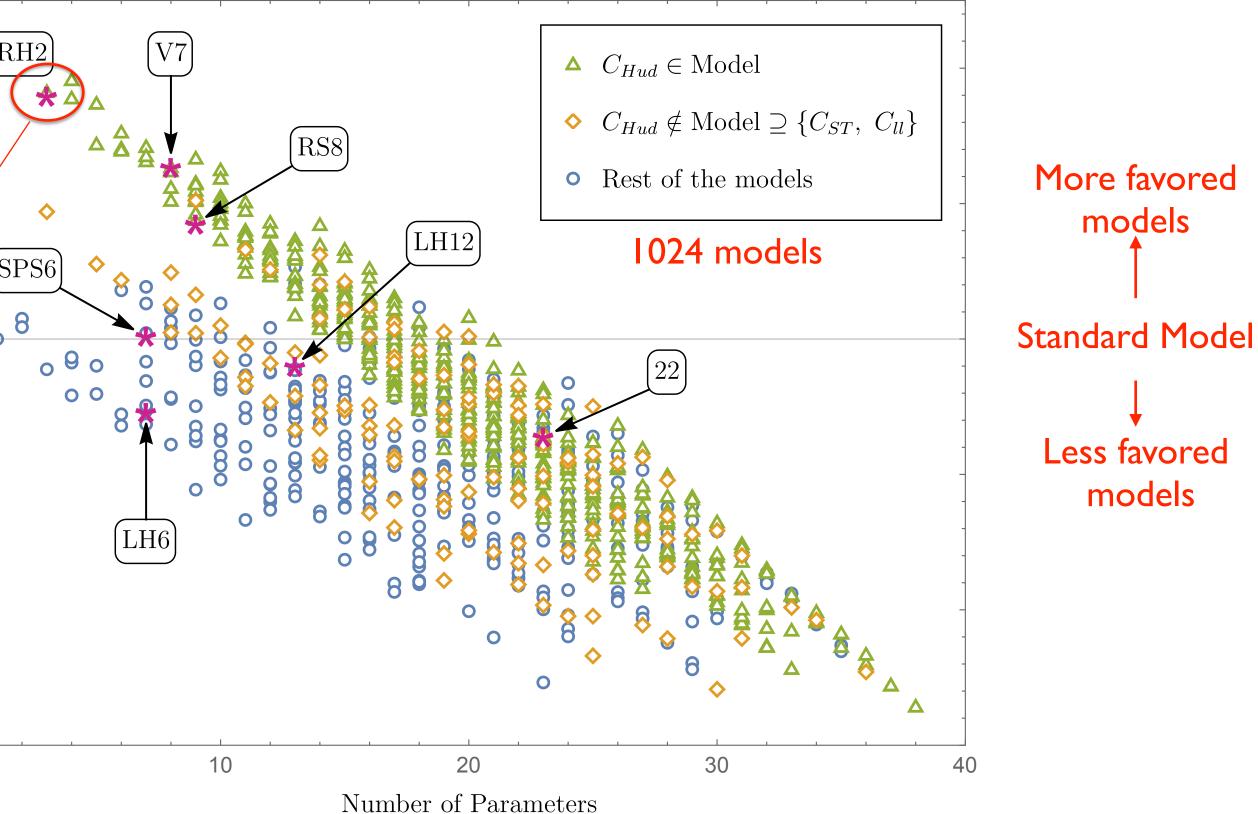


Best fit to CLEW data: two RH CC vertex corrections and the S parameter

CKM "anomaly" not ruled out by other data. Unitarity test provides relevant input to unravel possible new physics

Global analysis (2)

VC, W. Dekens, J. De Vries, E. Mereghetti, T. Tong, JHEP 03 (24) 33, arXiv: 2311.00021



Conclusions and outlook

The Cabibbo universality test is a precision tool to challenge the Standard Model. and explore what may lie beyond it

- Current tensions in Cabibbo universality test could point to new physics at $\Lambda \sim$ few TeV, with right-handed quark-W couplings a viable and testable culprit. However ...
- - Experiment: neutron, K, π , τ
 - Theory: lattice QCD+QED for neutron, K, π ; EFT+ 'ab-initio' methods for nuclei

Ongoing experimental and theoretical activities promise interesting developments

Both experimental and theoretical scrutiny is needed! Progress expected on several fronts:

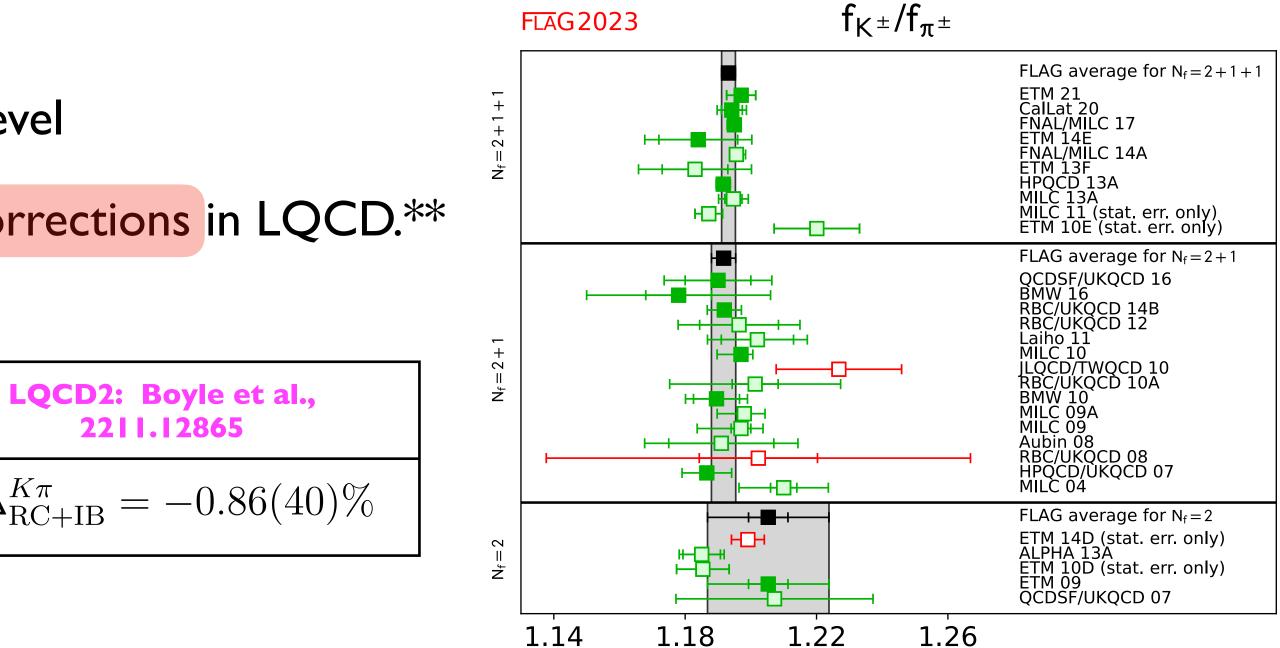
Backup

V_{us} from $K \rightarrow \mu \nu$ decays

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_\pi} = \left(\frac{\Gamma_{K \to \mu\nu(\gamma)} \ m_{\pi^{\pm}}}{\Gamma_{\pi \to \mu\nu(\gamma)} \ m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2 / m_{\pi^{\pm}}^2}{1 - m_{\mu}^2 / m_{K^{\pm}}^2} \left(1 - \frac{\Delta_{\text{RC+IB}}^{K\pi}}{2}\right)$$

- Lattice QCD calculations of F_K/F_{π} are at the 0.2% level \bullet
- First calculation of radiative and isospin-breaking corrections in LQCD.** \bullet Compatible with ChPT, factor of ~2 more precise

ChPT: VC-Neufeld, 1102.0563	** LQCDI: Di Carlo et al., 1904.08731	L
$\Delta_{\rm RC+IB}^{K\pi} = -1.12(21)\%$	$\Delta_{\rm RC+IB}^{K\pi} = -1.26(14)\%$	Δ_{H}^{I}



1.14

V_{us} from $K \rightarrow \mu \nu$ decays

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_\pi} = \left(\frac{\Gamma_{K \to \mu\nu(\gamma)} \ m_{\pi^{\pm}}}{\Gamma_{\pi \to \mu\nu(\gamma)} \ m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2 / m_{\pi^{\pm}}^2}{1 - m_{\mu}^2 / m_{K^{\pm}}^2} \left(1 - \frac{\Delta_{\text{RC+IB}}^{K\pi}}{2}\right)$$

- Lattice QCD calculations of F_K/F_{π} are at the 0.2% level
- First calculation of radiative and isospin-breaking corrections in LQCD.** Compatible with ChPT, factor of ~2 more precise

ChPT: VC-Neufeld, 1102.0563	** LQCDI: Di Carlo et al., 1904.08731	L
$\Delta_{\rm RC+IB}^{K\pi} = -1.12(21)\%$	$\Delta_{\rm RC+IB}^{K\pi} = -1.26(14)\%$	Δ_{I}^{I}

Potential issue (1):

Kmu2 BR dominated by one measurement (KLOE)

Km3/Kmu2 BR measurement at 0.2% would have significant impact

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{\mathrm{RC+IB}}[51]_{\mathrm{total}}$$



Potential issue (2):

Isospin scheme dependence

$$\Gamma_{K \to \pi \ell \nu(\gamma)} = \frac{C_K^2 G_F^2 S_{EW} |V_{us}|^2}{192\pi^3}$$

Lattice calculations of $<\pi |V|K>$ @ 0.2%:

New radiative corrections based on current algebra + lattice QCD. Consistent with ChPT, with much smaller uncertainties

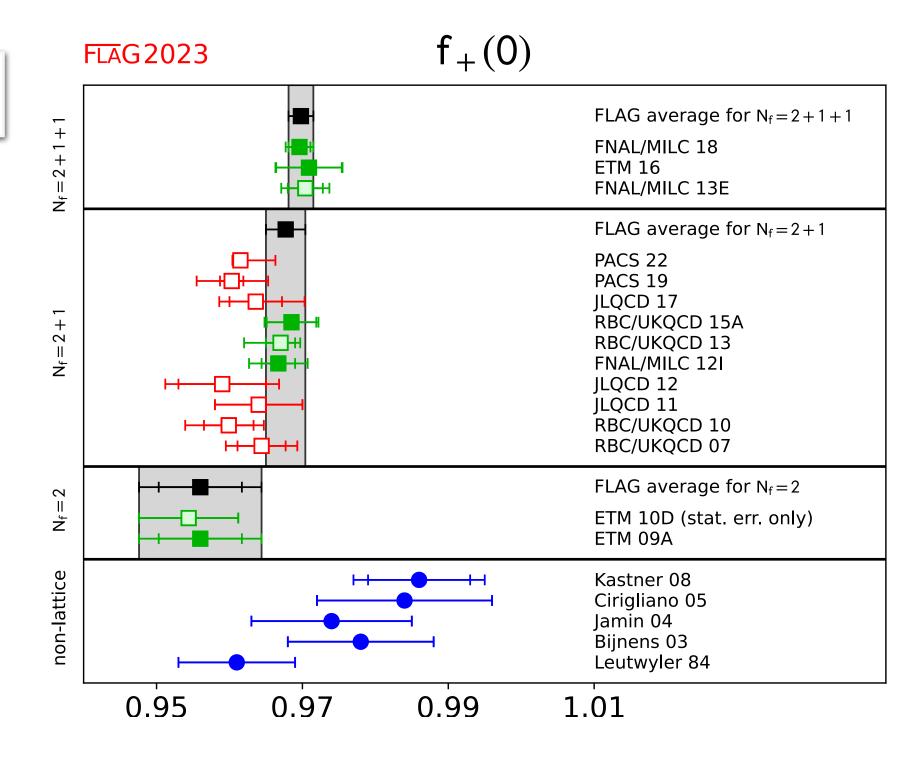
	Cirigliano et al. '08	Seng et al. '21
$\Delta^{EM}(K^0_{e3})$ [%]	0.50 ± 0.11	0.580 ± 0.016
$\Delta^{EM}(K^{+}_{e3})$ [%]	0.05 ± 0.12	0.105 ± 0.023
$\Delta^{EM}(K^+_{\mu 3})$ [%]	0.70 ± 0.11	0.770 ± 0.019
$\Delta^{EM}(K^{0}_{\mu3})$ [%]	0.01 ± 0.12	0.025 ± 0.027

NEW: Seng et al, 1910.13209, 2103.00975. 2103.4843. 2107.14708. 2203.05217. Ma et al. 2102.12048 OLD: VC, Giannotti, Neufeld 0807.4607

V_{us} from $K \rightarrow \pi Iv$ decays

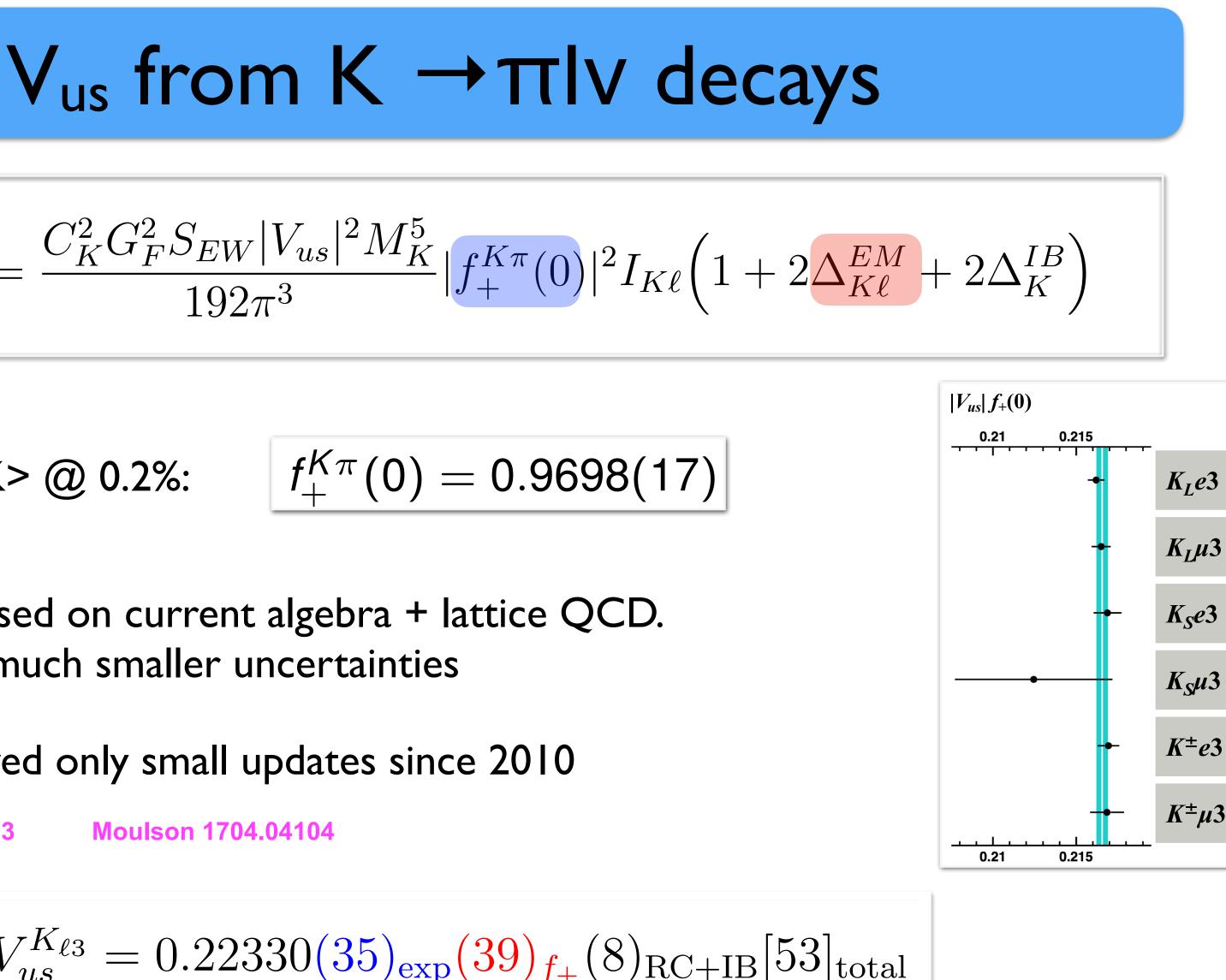
 $\frac{M_{K}^{5}}{M_{K}^{5}} |f_{+}^{K\pi}(0)|^{2} I_{K\ell} \left(1 + 2\Delta_{K\ell}^{EM} + 2\Delta_{K}^{IB}\right)$

 $f_{\perp}^{K\pi}(0) = 0.9698(17)$



$$\Gamma_{K \to \pi \ell \nu(\gamma)} = \frac{C_K^2 G_F^2 S_{EW} |V_{us}|^2 \Gamma_{LS}}{192\pi^3}$$

Lattice calculations of $<\pi |V|K>$ @ 0.2%:



- New radiative corrections based on current algebra + lattice QCD. Consistent with ChPT, with much smaller uncertainties
- Experimental input has received only small updates since 2010

Flavianet WG, **1005.2323**

Moulson 1704.04104

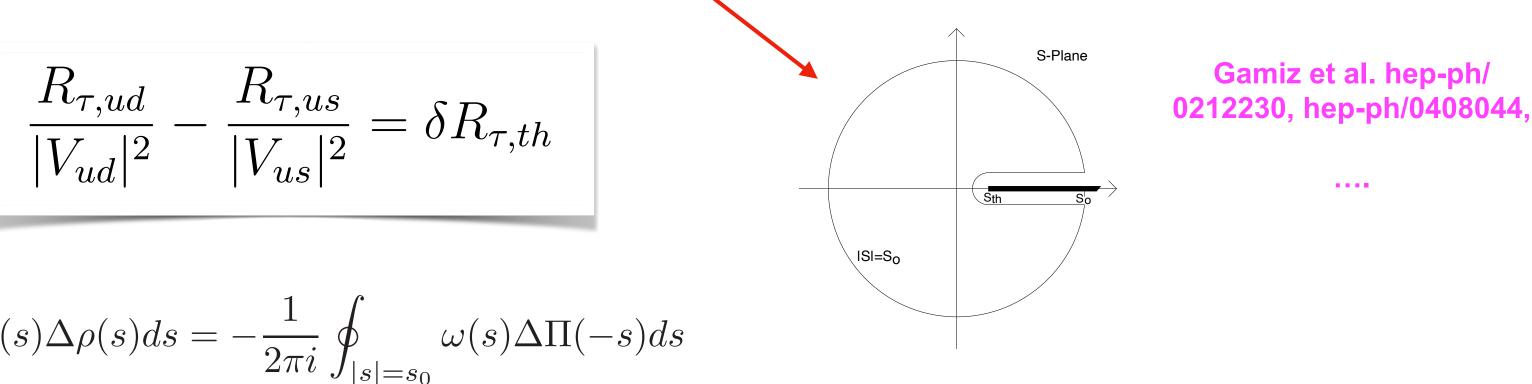
$$V_{us}^{K_{\ell 3}} = 0.22330(35)$$

Potential issue: definition of 'isosymmetric QCD' in lattice (f₊(0)) vs calculations of $\Delta^{\text{EM, IB}}$

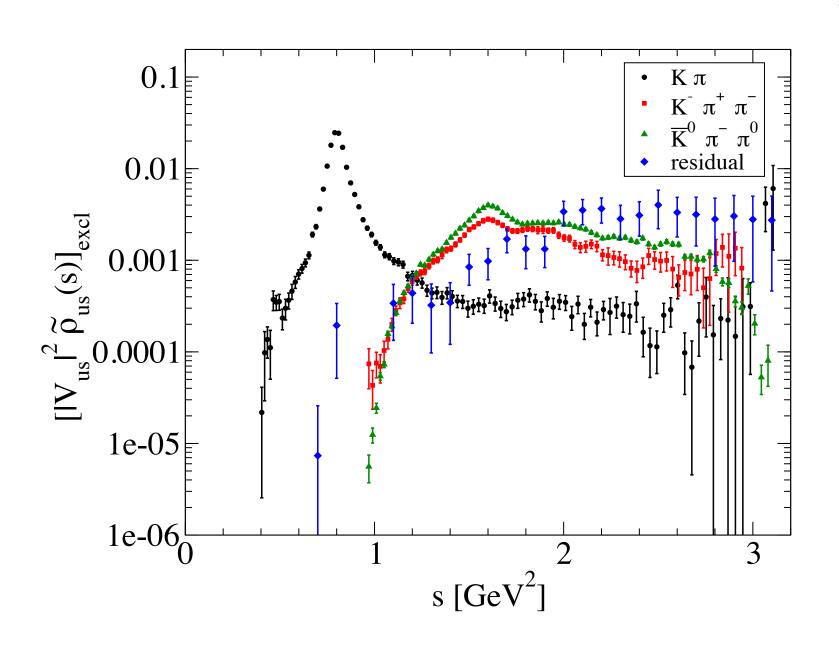
V_{us} from tau decays

 \bullet

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to \bar{\nu}_e e \nu_{\tau}]}$$



$$\int_0^{s_0} \omega(s) \Delta \rho(s) ds =$$

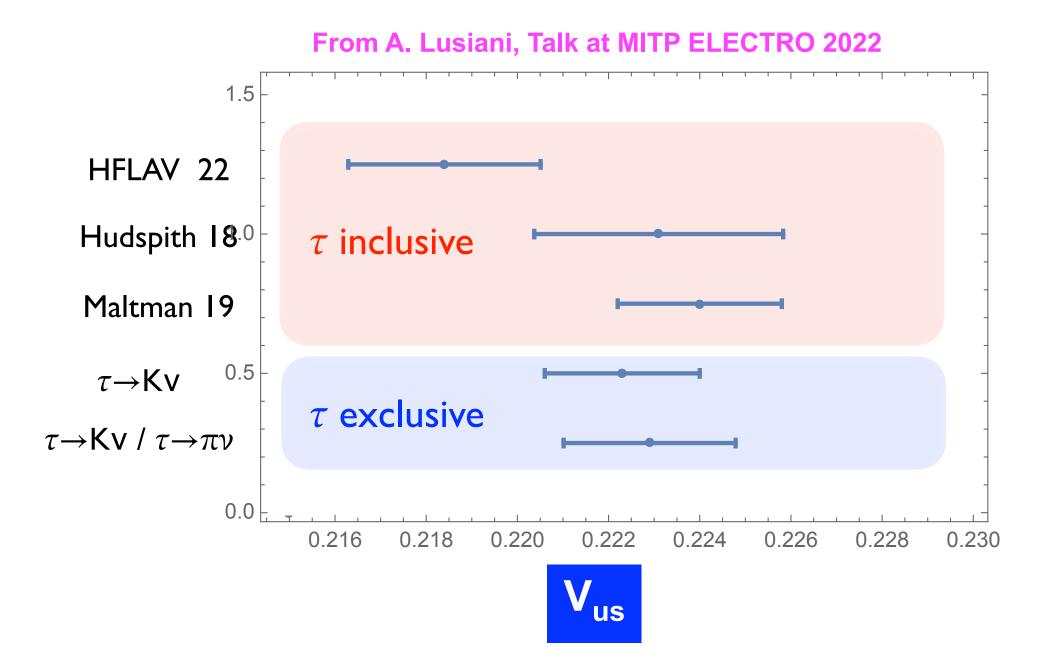


Inclusive $(\tau \rightarrow X_s v)$: need integrated spectral functions + $\Delta \Pi_{ij}(s)$ on the $|s| = s_0 \sim m_{\tau^2}$ circle (OPE \rightarrow Lattice QCD)

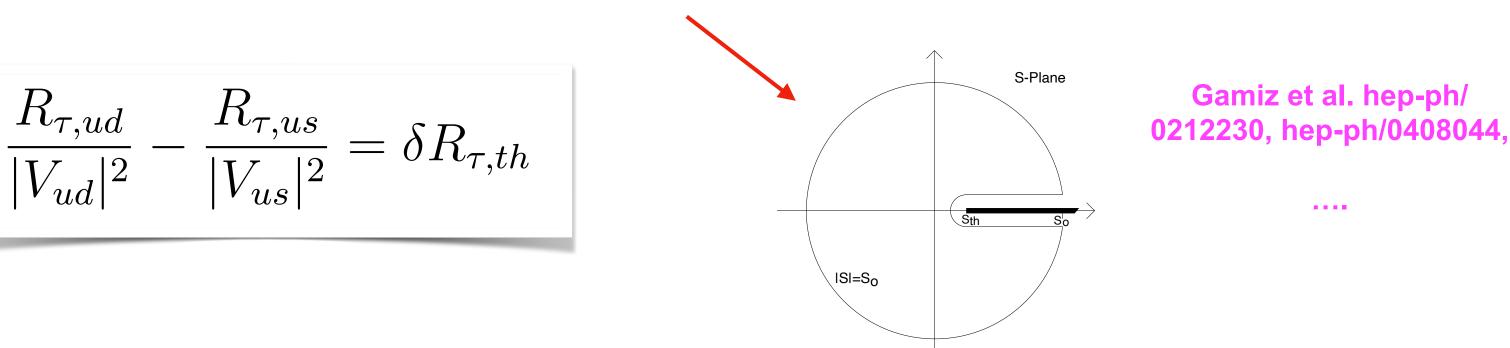
V_{us} from tau decays

 \bullet

 $R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to \bar{\nu}_{e} e \nu_{\tau}]}$



Inclusive $(\tau \rightarrow X_s v)$: need integrated spectral functions + $\Delta \Pi_{ij}(s)$ on the $|s| = s_0 \sim m_{\tau^2}$ circle (OPE \rightarrow Lattice QCD)



A. Lusiani, HFLAG WG (1909.12524)

method	experiment [%]	theory [%]	lattice QCD [%]	rad.corr. [%]
$ au o X_s u$	0.84	0.49		
$ au { ightarrow} K/ au { ightarrow} \pi$	0.72		0.18	0.40
$ au{ ightarrow} K$	0.69		0.19	0.29

Experimental prospects:

Belle-II and possibly tau-charm factory & FCC-ee Theory prospects:

(I) Radiative corrections are a bottleneck for exclusive modes;

(2) lattice QCD will provide first-principles inclusive determination

RGEs in the LEFT

$$\mu \frac{\mathrm{d}C_{\beta}^{r}(a,\mu)}{\mathrm{d}\mu} = \gamma(\alpha,\alpha_{s}) C_{\beta}^{r}(a,\mu),$$

$$\gamma(\alpha,\alpha_{s}) = \gamma_{0}\frac{\alpha}{\pi} + \gamma_{1}\left(\frac{\alpha}{\pi}\right)^{2} + \gamma_{se}\frac{\alpha}{\pi}\frac{\alpha_{s}}{4\pi} + \cdots$$

$$\gamma_{1}^{NDR}(a) = \frac{\tilde{n}}{18}(2a+1), \qquad \tilde{n} = \sum_{f} n_{f}Q_{f}^{2} \qquad \gamma_{se} = +1$$
A. Sirlin 1982
$$C_{\beta}^{\mathrm{LO}}(m_{c}) = 1.01014$$

$$Q_{\beta}^{\mathrm{LL}}(m_{c}) = 1.01044$$

$$\mu \frac{\mathrm{d}C_{\beta}^{r}(a,\mu)}{\mathrm{d}\mu} = \gamma(\alpha,\alpha_{s}) C_{\beta}^{r}(a,\mu),$$

$$\gamma(\alpha,\alpha_{s}) = \gamma_{0} \frac{\alpha}{\pi} + \gamma_{1} \left(\frac{\alpha}{\pi}\right)^{2} + \gamma_{se} \frac{\alpha}{\pi} \frac{\alpha_{s}}{4\pi} + \cdots$$

$$\gamma_{0} = -1 \qquad \gamma_{1}^{NDR}(a) = \frac{\tilde{n}}{18} (2a+1), \qquad \tilde{n} = \sum_{f} n_{f}Q_{f}^{2} \qquad \gamma_{se} = +1$$
A. Sirlin 1982
Scheme-independent NLO Wilson Coefficient
$$C_{\beta}^{\mathrm{LO}}(m_{c}) = 1.01014$$

$$C_{\beta}^{r}(a,\mu) = \left(1 + \frac{\alpha(\mu)}{\pi}B(a)\right) \times \overline{C}_{\beta}^{r}(\mu)$$

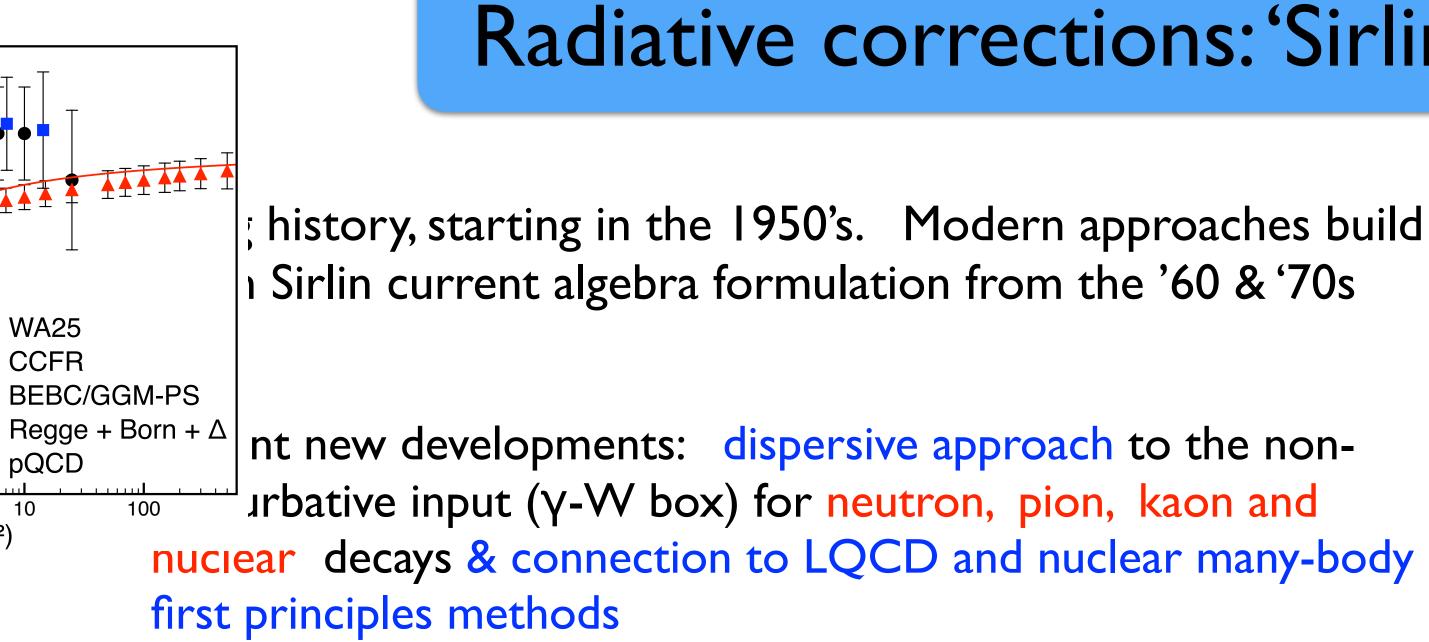
$$C_{\beta}^{\text{LO}}(m_c) = 1.01014,$$

$$C_{\beta}^{\text{LL}}(m_c) = 1.01043,$$

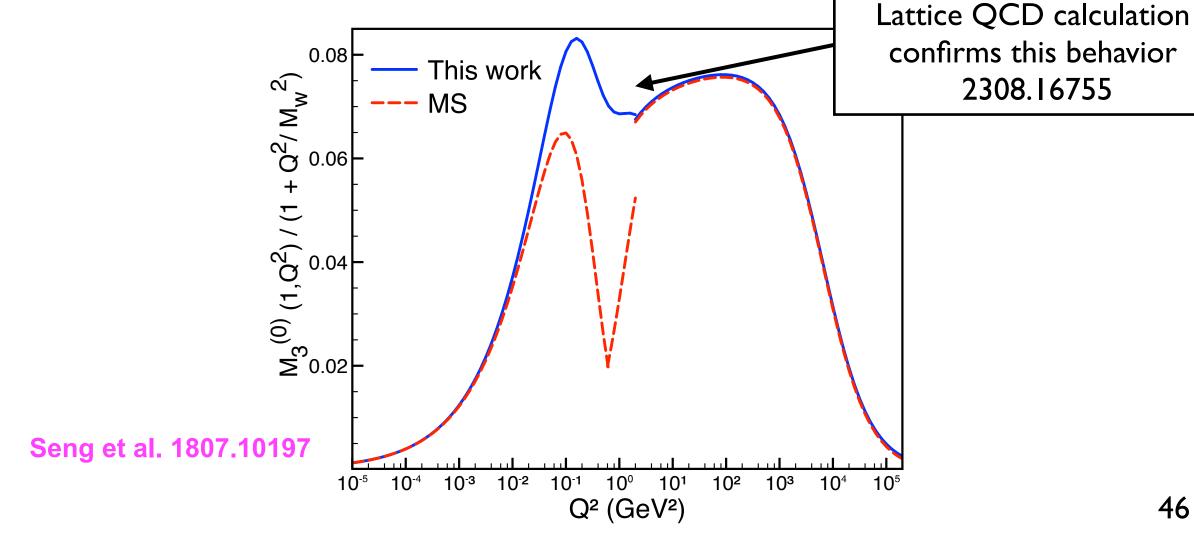
$$C_{\beta}^{\text{NLL1}}(m_c) = 1.01027,$$

$$\overline{C}_{\beta}^{\text{NLL2}}(m_c) = 1.01018.$$

NLLI ($\alpha\alpha_s$) and NLL2 (α^2) RGEs essentially undo LL enhancement....

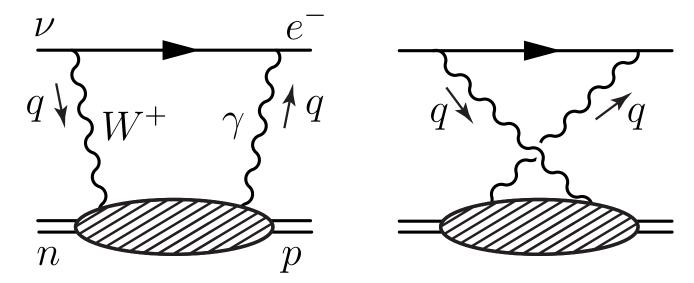


Example: EM correction to $n \rightarrow p$ vector coupling



Radiative corrections: 'Sirlin's representation'

Seng et al. 1807.10197, Czarnecki et al, 1907.06737, Shiells et al. 2012.01580 Hayen 2010.07262, Gorchtein-Seng 2106.09185



Gorchtein, Feng, Jin, Seng, ... 2003.09798, 2003.11264, 2102.12048, 2308.16755 Gennari, Drissi, Gorchtein, Navratil, Seng, 2405.19281

Larger correction, smaller error. It affects both neutron and nuclear decays

Ref.	Δ_R^V
Marciano, Sirlin 2006	0.02361(38)
Seng, Gorchtein, Patel, Ramsey-Musolf 2018	0.02467(22)
Czarnecki, Marciano, Sirlin 2019	0.02426(32)
Seng, Feng, Gorchtein, Jin 2020	0.02477(24)
Hayen 2020	0.02474(31)
Shiells, Blunden, Melnitchouk 2021	0.02472(18)
Combined [2208.11707]	0.02467(27)

