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Particle Physics 2024:

• All particles in the Standard 
Model discovered

• Very few lab measurements in 
tension with SM

• SM known to be incomplete: 
Dark matter, baryon asymmetry, 
gravity, hierarchy,... 
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Particle Physics 2024:

• All particles in the Standard 
Model discovered

• Very few lab measurements in 
tension with SM

• SM known to be incomplete: 
Dark matter, baryon asymmetry, 
gravity, hierarchy,... 

• Where to look for new physics?

• Where do we see physics  
beyond the standard model 
already?
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Lepton Flavour Violation!
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Charged Lepton Flavour Violation?
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Heavily suppressed in the SM 
by (Δmν

2/mW
2)2

Branching fraction < 10-54

Charged Lepton Flavour Violation?
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New physics in μ+ → e+e-e+

Tree diagrams

• Higgs triplet model

• Extra heavy vector bosons (Z’)

• Extra dimensions (Kaluza-Klein tower)

• ...

Loop diagrams

• Supersymmetry

• Little Higgs models

• Seesaw models

• GUT models (leptoquarks)

• and much more...
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• Electrons are stable... 

• New physics sensitivity (heavy new phys-
ics, very generic) scales with ml

2  
Τ’s are most sensitive 

• But: Can produce about as many muons 
per second as taus in a year 

• Muons lead the search for charged  
Lepton Flavour Violation

Menu of charged Leptons
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LFV Muon Decays: Experimental Situation

μ+ → e+γ μ-N → e-N μ+ → e+e-e+
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LFV Muon Decays: Experimental Situation

μ+ → e+γ μ-N → e-N μ+ → e+e-e+

MEG/MEG II (PSI) SINDRUM II (PSI) SINDRUM (PSI)
B(μ+ → e+γ) < 3.1 ∙ 10-13 

(2024)
B(μ- Au → e-Au) < 7 ∙ 10-13 

(2006)
B(μ+ → e+e-e+) < 1.0 ∙ 10-12 

(1988)
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LFV Muon Decays: Experimental Situation

μ+ → e+γ μ-N → e-N μ+ → e+e-e+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)
B(μ+ → e+γ) < 3.1 ∙ 10-13 

(2024)
B(μ- Au → e-Au) < 7 ∙ 10-13 

(2006)
B(μ+ → e+e-e+) < 1.0 ∙ 10-12 

(1988)

MEG II Mu2e/Comet Mu3e
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LFV Muon Decays: Experimental signatures

μ+ → e+γ μ-N → e-N μ+ → e+e-e+

Kinematics
• 2-body decay
• Monoenergetic e+, γ
• Back-to-back

Kinematics
• Quasi 2-body decay
• Monoenergetic e-

• Single particle detected

Kinematics
• 3-body decay
• Invariant mass constraint
• Σ pi = 0
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• 2-body decay
• Monoenergetic e+, γ
• Back-to-back

Background
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LFV Muon Decays: Experimental signatures
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The μ+→e+e-e+ Process:

Requirements for an Experiment
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• μ+ → e+e-e+ 

• Two positrons, one electron 

• From same vertex 

• Same time 

• Sum of 4-momenta corresponds to muon 
at rest 

• Maximum momentum: ½ mμ = 53 MeV/c

The signal
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• Combination of positrons from ordinary 
muon decay with electrons from: 
- photon conversion, 
- Bhabha scattering, 
- Mis-reconstruction 
 

• Need very good timing, vertex and  
momentum resolution

Accidental Background
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• Allowed radiative decay with internal 
conversion: 
 

  μ+ → e+e-e+νν 
• Only distinguishing feature:  

Missing momentum carried by neutrinos

Internal conversion background

• Need excellent 
momentum resolution Br

an
ch

in
g 
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tio
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10-18

10-14

e+e-e+ mass (MeV/c2)
105 106104103102101

Internal conversion
background

Signal
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Building the 
Mu3e Experiment 

 
aiming for a branching ratio sensitivity of 10-16 

(few 10-15 for the current first phase) 
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Getting Muons
• Paul Scherrer Institute in Switzerland

• 1.4 MW, 590 MeV proton accelerator

• Carbon target, produce pions, decay to 
muons 

• Currently: Up to 108 muons/s available 
Mu3e Phase I 

• Future (2027+): High-intensity muon 
beamline (HIMB) with up to 1010 muons/s 
Mu3e Phase II 

• Need to be able to stand these rates
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• Apply magnetic field (e.g. 1 Tesla)

• Measure curvature of particles in field

• Limited by detector resolution and 
scattering in detector

Momentum measurement
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• 1 T magnetic field 

• Resolution dominated by multiple  
scattering 

• Momentum resolution to first order: 

   ΣP/P  ~ θMS/Ω 

• Precision requires large lever arm 
(large bending angle Ω) and  
low multiple scattering θMS

Momentum measurement

Ω

MS

θMS

B



Niklaus Berger – June 2024 – Slide 24

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c

B
→

33 cm
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Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c

B
→

Ω ~ π

MS

θMS

B
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• 1 T magnetic field 

• Resolution dominated by multiple  
scattering 

• Momentum resolution to first order: 

   ΣP/P  ~ θMS/Ω 

• Precision requires large lever arm 
(large bending angle Ω) and  
low multiple scattering θMS

Momentum measurement

Ω

MS

θMS

B
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Very thin and fast silicon pixel sensors: 
HV-MAPS
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High voltage monolithic active pixel  
sensors - Ivan Perić

• Use a high voltage commercial  
process (automotive industry)

Fast and thin sensors: HV-MAPS

P-substrate

N-well E �eld
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High voltage monolithic active pixel  
sensors - Ivan Perić

• Use a high voltage commercial  
process (automotive industry)

• Small active region, fast charge  
collection via drift

Fast and thin sensors: HV-MAPS

P-substrate

N-well

Particle

E �eld

• Implement logic directly in N-well in the 
pixel - smart diode array

• Can be thinned down to ~ 50 μm 
 
(I.Perić, NIM A 582 (2007) 876 )
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• HV-MAPS: Thin, fast pixel sensors 
 
 

• Recurler tracking: Bending in field  
happens mainly outside of the tracker

Mu3e concept

P-substrate

N-well

Particle

E �eld

50 MeV/c 25 MeV/c 12 MeV/c

B
→
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• HV-MAPS: Thin, fast pixel sensors 
 
 

• Recurler tracking: Bending in field  
happens mainly outside of the tracker 
 
 

• We knew that more than 10 years ago - 
experiment is taking shape now - what 
happened in the meantime?

Mu3e concept

P-substrate

N-well

Particle

E �eld

50 MeV/c 25 MeV/c 12 MeV/c

B
→
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HV-MAPS: Sensor to system 
 

The MuPix chips
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• 80 x 80 μm2

• High efficiency

• Low noise

• Good time resolution

• Low power consumption 
~ 200 mW/cm2 achieved

Pixel cell
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• Amplifier in pixel

• Comparator, hit latching and time- 
stamping in the periphery

• Streaming column-drain readout con-
trolled by on-chip state machine

• Three 1.25 Gbit/s LVDS links for data  
output

Readout architecture
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Series of HV-MAPS prototypes

• Goal: Detection and signal processing 
with just 50 μm silicon

• 6th chip, MuPix7, was the first full system-
on-a-chip

• Going “big” 2 x 1 cm2 MuPix8 
with 80 by 80 μm pixels also working 
nicely - some growing pains fixed

• MuPix10, 2 x 2 cm2, almost final

• MuPix11, 2 x 2 cm2, production chip,  
now available

The MuPix Prototypes
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Introduction
Y

• X



Niklaus Berger – June 2024 – Slide 41

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium 
traces

• Kapton™ or unidirectional carbon fibre 
supports 

Mechanics and Connections
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• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium 
traces

• Kapton™ or unidirectional carbon fibre 
supports

• About 1‰ of a radiation length per layer

• Large traces: few lines possible 

• No decoupling capacitors...

Mechanics and Connections
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Introduction
Y

• X
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• ~ 200 mW/cm2 - about 2 KW for the 
complete pixel detector

• Add as little material as possible: 
Gaseous helium at ~ 0°C

• Need around 50 g/s 
(~280 liter/s at STP...)

• Helium is difficult to pump...

• Very nice little turbocompressors  
available

• Cooling plant is an engineering project  
of its own

Cooling
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Assemble this to an experiment...
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Detector Design

muon beam

target
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Detector Design

muon beam
target
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Detector Design

muon beam

target

inner pixel layers
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Detector Design

outer pixel layers

muon beam

target

inner pixel layers
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Detector Design

outer pixel layers

muon beam
target

inner pixel layers

recurl pixel
layers

scintillating 
fibres
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Need further suppression of accidental background: 
 

Timing
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Detector Design

scintillating 
fibres

outer pixel layers

muon beam

target

inner pixel layers
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Detector Design

outer pixel layers

muon beam
target

inner pixel layers

recurl pixel
layers

recurl pixel
layers

scintillating 
fibres

Scintillating
tiles
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• 3 layers of 250 μm scintillating fibres 

• Read-out by silicon photomultipliers  
(SiPMs) and custom ASIC (MuTRiG) 

• Timing resolution < 0.5 ns 

Timing Detector: Scintillating Fibres
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Timing Detector: Scintillating tiles
• ~ 0.5 cm3 scintillating tiles

• Read-out by silicon photomultipliers  
(SiPMs) and custom ASIC (STiC) 

 

Scin ator Tiles 

SiPM 

Readout 
Electronics 

 

Time Difference [ps]
-750 -500 -250 0 250 500 750
0

2000

4000

6000

8000

10000

σ = 79.2 ps

• Test beam with tiles, SiPMs and readout 
ASIC

• Timing resolution ~ 80 ps
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Timing Detector: Scintillating tiles
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Long thin tube detector:

Integration challenges
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Detector Design

outer pixel layers

muon beam
target

inner pixel layers

recurl pixel
layers

scintillating 
fibres

All services for all subdetectors around the 
beam pipe in the recurl stations
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Detector Design

• Full CAD  with wires and pipes

• Space is very tight
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• 3D printed detector mock-up for assembly tests
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Assembly procedures 
and cooling concept with heatable prototype
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Data Acquisition
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• Fully streaming DAQ

• Network of FPGAs and optical 
links

• Collect all data of a time slice 
on one PC

• Reconstruct tracks, then  
vertices on a GPU

• Write interesting events to disk

DAQ Design
2844 Pixel Sensors

up to 45 
1.25 Gbit/s links

FPGA FPGA FPGA

...

88 FPGAs

One 6 Gbit/s
link each

GPU
PC

GPU
PC

GPU
PC12 PCs

2-8 10 Gbit/s
links per 

16 Inputs
each

 3072 Fibre Readout Channels

FPGA FPGA

...

12 FPGAs

 5824 Tiles

FPGA FPGA

...

14 FPGAs

Data
Collection

Server

Mass
Storage

Gbit Ethernet

Switching
Board

Switching
Board

Front-end
(inside m

agnet)

Switching 
Board

Switching
Board

Switching
Board
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• GPU reconstruction on gaming cards

• Have achieved > 109 track fits/s per GPUs 
(Nvidia GTX 980)

• Twelve GTX 1080Ti are sufficient for 
dealing with 108 muon decays/s 
 
~ 8 years pass 

• Just four RTX 4090 can handle Mu3e 
phase I...

GPU reconstruction
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Performance simulation
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Mass distribution
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Momentum distribution
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Mass/Momentum distribution
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• Phase I expected SES is a few 10-15

• Upgrade to high-intensity muon beam 
line likely in 2027

• 20 times more beam:  
A lot of new challenges 

• Gradual transition to Phase II

Sensitivity

0 100 200 300 400
Data taking days

15−10

14−10

13−10

12−10

11−10)
 e

ee
→

µ
BR

(

-15 10×2

SES
90% C.L.

95% C.L.

Mu3e Phase I  muon stops/s810
13.0% signal efficiency

SINDRUM 1988
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Better timing:

• Replace scintillating fibres by super-fast 
pixel detector O(100 ps)  
(SiGe, gain layer,...)

• Push HV-MAPS timing to O(1 ns) 

More acceptance, less material:

• Longer pixel modules

• Carbon fibre supports

• Serial powering

• Chip-to-chip communication

• ...

Phase II requirements and ideas
G. Iacobucciet al. 2019 
JINST 14 P11008
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• Mu3e aims for μ → eee at the 10-16 level 

• First large scale use of HV-MAPS 

• Build detector layers thinner than a hair 

• Timing at the 100 ps level 

• Reconstruct >108 tracks/s in ~100 Gbit/s on ~4 GPUs 

• Integration and commissioning 2024/25 

• ... and then finally data!

Conclusion


