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Energy time series aggregation
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Boddu, S. (2021): 
(PSI MSc Thesis)

Original: 365 different days k-means clustering (example: 8 clusters)

• Clustering ensures that amounts (energy, availabilities, etc.) are similar “on average”
• What about the correlations between hours of day, and to other time series (esp. wind & solar)?
• In this talk: Capturing correlations of wind & solar availability per seasons 
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• Why time series aggregation?  Numerical tractability of energy system models
• Majority of works (and ours):  Aggregation on criteria “inside” input data (Hoffman,2020)

• Minority: “Energy system structure” aggregation: Pöstges & Weber, 2019; Teichgräber et al., 2019; Wogrin, 2022  
• Frequently used are clustering method: K-means,  k-medoids, hierarchical clustering, with vector-norm of 

differences, e.g. ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 
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Wind & solar availability: Average days per season
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(on- and offshore) 
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Different wind pattern: Example Italy
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Region 2017 2018 2019

Austria -0.12 -0.14 -0.17

Switzerland -0.16 -0.05 -0.12

Germany (on- and offshore) -0.17 -0.24 -0.22

Germany offshore -0.15 -0.21 -0.16

France -0.15 -0.21 -0.16

Italy -0.07 -0.09 -0.10

Correlation: Hourly wind & solar PV availability
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(wind: on + offshore) 

• Negative correlation can be higher in certain 
hours, up to: -0.4

• Positive correlation at 
• late-evening solar
• late-evening wind
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Germany (DE), Summer, 2017-2019
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Correlation wind vs. solar over all hours a year Correlation for each hour
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Principal  Component Analysis (PCA)
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Variance of PCs ordered by variance Loadings of the ordered PCs

48h-vector
wind + solar
availability 

• Based on covariances, PCA yields uncorrelated loadings

Example: Germany, summer, 2017-19
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Italy: PCA of hourly wind & solar
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Variance of PCs ordered by variance Loadings of the ordered PCs

48h-vector
wind + solar
availability 

Again: Summer, 2017-19
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• PCA approximates covariance matrix of X by sum of uncorrelated loadings:
 

                                         𝑋𝑋 ≈ ∑𝑖𝑖=1𝑘𝑘 𝑃𝑃𝑖𝑖𝑢𝑢𝑖𝑖 ,                      k < n 
 

− 𝑋𝑋 ∈ ℝ𝑛𝑛: original random vector with values in n-dimensional space (n = 48),
− 𝑃𝑃𝑖𝑖 ∈ ℝ: random variable, ith PC, 
− 𝑢𝑢𝑖𝑖 ∈ ℝ𝑛𝑛: loadings of PC (deterministic vector)

• Factor model: 𝑋𝑋 = 𝑈𝑈𝑈𝑈 +  𝜀𝜀
− 𝑈𝑈 = 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘 𝑇𝑇 ∈ ℝ𝑘𝑘: lower-dimensional factor, 
− 𝑈𝑈 = 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛
− Distribution of factors 𝑃𝑃𝑖𝑖 are fitted by 

continuous distributions and then discretized:

Scenario generation: Factor model given by PCA

Example: Germany,
summer, 𝑃𝑃1
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Scenarios; Quality
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• number of components and discretizations:    
1st, 2nd, 3rd PC  =   6, 3, 2

Example: Germany, summer; 36 scenarios; 
line width = probability weight

Duration curves 

Correlation of scenarios

Solar, Wind, 

Correlation: error
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Several countries: PCA over two countries?
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Variance of the PCs having highest variance Loadings of the ordered PCs

96h-vector of hourly
wind IT + solar IT + 
wind DE + solar DE 

availability

Example: Italy + Germany



Aggregation of intermittent renewables in energy market models, Martin Densing & Yi Wan, IAEE Milano 2023

• Regions: Switzerland and surrounding countries: CH, AT, DE, FR, IT
• Keep dimension low (i): Cross-regional correlation between daily availability (avg. of hourly)
• Keep dimension low (ii): By statistical analysis: If sun is shining, then usually in all countries

Across regions: Daily wind & solar availability
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Correlation matrix daily wind and solar

solar PV (all countries)

wind: AT, CH, DE, FR, IT
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• Tail dependence := Probability of joint, extremely-high values (or extremely low values)
• Daily wind & solar availability across regions: High tail-dependence = 0; 

Low tail-dependence =

Tail-dependence of wind & solar across regions
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• Scenario generation: Random sampling from multivariate distribution of the variables
• Estimation of distribution? Gaussian has tail-dependences = 0. We use: t-distribution

• Likely: Joint calms across regions 
• Unlikely: Joint storms, or dark- & 

calmness

Within a day: 
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Correlation is not enough
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Random samples of
Bivariate Gaussian (normal) copula, 

corr = 80%

Random samples of 
Bivariate t-copula

corr=80%

Copula: Multivariate random variable, values in [0,1], to capture only interdependencies 
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• Copulas in spatial energy time series: see e.g. Zhan et al. (2019), Camal et al. (2019)
• A random sample of a copula are quantiles of its marginal distributions. Two steps: 

 (i) Sample quantile α for daily wind, solar, for each region (-> daily values across regions) 
   (ii) Identify with hourly scenario having closest quantile α (ordered by daily values)

Random sampling of copula of t-distribution
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solar, each region
20 random samples from t-copula  20 scenarios

wind, each region
Random 
sample of 
copula for 
solar in 
region

Distribution function of 
solar PV in a region

(i)

(ii)
Identification 
with hourly 
scenario in 
region

scenarios 
ordered by 
daily availability

daily
availability
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Results in an electricity market model
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• BEM: Cross-border electricity market model: Switzerland and surrounding countries (Panos & Densing, 2019)
• BEM is run for this work in “basic” marginal-cost mode (price-peaks in model too low)

Price rangesPrice duration curves
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Conclusions
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• To capture dependences between time series of renewable supply is difficult:
− Correlation and extreme events can be captured with daily inter-regional resolution and 

hourly intra-regional resolution (not shown: comparison conventional clustering)
− Approach could be extended to sequence of days (dimensions goes up!)

• Limitation: To match correlations, we need several (statistical) representative days per season : 
Suitable for daily or seasonal storage, but not (“yet”) for consecutive days.

• Why not use the original 8760h model? 
− Numerical intractability

• Why use the original 8760h model?
− Dependencies are trivially captured
− Energy modelers are not meteorologists

• Densing & Wan, 2022. Low-dimensional scenario... Applied Energy. 10.1016/j.apenergy.2021.118075
• R-package: https://gitlab.psi.ch/energy-economics-group/representative-days.

https://doix.org/10.1016/j.apenergy.2021.118075
https://gitlab.psi.ch/energy-economics-group/representative-days
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