DEVELOPMENT OF A DC-DC CONVERTER FOR THE MU3E EXPERIMENT

SOPHIE GAGNEUR MU3E COLLABORATION DPG FRÜHJAHRSTAGUNG DORTMUNG 2021

3/15/2021

THE MU3E EXPERIMENT

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 202

3/15/2021

MOTIVATION

Michel decay

- Branching ratio nearly ~100%
- $\mu \rightarrow$ eee suppressed in the standard model lepton flavour violation

Theories of physics beyond the standard model

THE EXPERIMENT

THE DETECTOR

POWER REQUIREMENTS

- Relatively low voltages required by the detector components (1-3.3V)
- Cables are very long \rightarrow high losses through the cables
- Thicker cables are not possible according to size
- Solution: DC-DC converters close to the detector parts step a 20V input power down to the required value
- Power distribution is segmented into power partitions:

THE MU3E DC-DC CONVERTER

LAB MEASUREMENTS & TEST BEAM RESULTS

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 202

3/15/2021

A SYNCHRONOUS BUCK CONVERTER

- Not regulated DC input voltage is converted into a regulated DC output voltage
- Regulation is derived from high-frequency switching of two MOSFETs
 - \rightarrow Producing a rectangular voltage
- Output signal is smoothed by a coil und capacitors
- Switching behaviour is synchronised to prevent short circuits synchronous buck converter

DC-DC CONVERTER FOR MUPIX & MUTRIG

- Vin = 20V
- Vout = 2.1V
- L = 0.55µH
 - Air coil
- C = 22µF
- fswitch = IMHz
- Efficiency: 87.0% at 20A

DC-DC CONVERTER FOR MUPIX & MUTRIG

- Vin = 20V
- Vout = 2.1V
- L = 0.55µH
 - Air coil
- C = 22µF
- fswitch = IMHz
- Efficiency: 87.0% at IOA

OUTPUT SIGNAL & FILTERING

 \blacksquare $V_{in} = 20V$ \blacksquare $V_{out} = 2.1V$ \blacksquare $I_{out} = 5A$ \blacksquare $f_{sw} = 1MHz$

- Ripple height: ~30mV
- Goal:≤I0mV

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 2021

TEST BEAM SET UP

- Powering of a MuPix sensor
- Sensor placed in a MuPix telescope
- Converter supplied with 20V
- Controlled by a Raspberry Pi
- Determine efficiency and noise level
 - Threshold scans
- Signal in a pixel is just registered if its level is above a certain threshold
- Scans with and without a second filter

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 2021

3/15/2021

TEST BEAM RESULTS

- Efficiency: 99.3%
- Noise always below IHz
- No patterns in the efficiency map
- No difference between the two converters configurations

THE SECOND VERSION

IMPROVEMENTS & NEW FEATURES

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 202

3/15/2021

OUTPUT SIGNAL

CURRENT SENSE MEASUREMENT

- Monitoring the current of the converter
 - voltage drop across a shunt resistor is measured
 - the voltage drop can be converted in the corresponding current

- Instrumentation amplifier: INA326, Texas Instruments
- Voltage drop of 50mV selected
- At 20A: 2.5m Ω shunt resistor \rightarrow 2W power dissipation
- Read out by ADCs
- Tested and working stable

TEMPERATURE INTERLOCK SYSTEM

- High power means strong heat development
- Complete detector must be cooled
- System to make sure the detector is running just when the cooling system is on
- Therefore the MuPix temperature diode is used
- Temperature rises \implies converters are switched off

BACKPLANE

- Controlling of 4 converters at the same time
- Later 16 boards
- Monitoring of all relevant voltages via ADCs

CONCLUSION & OUTLOOK

The new features of the second version of the mu3e DCDC converter are working

Test beam with several MuPix sensors powered by the converters

Behaviour at full load (20A)

Cooling system needs to be tested (already designed)

THANK YOU FOR YOUR ATTENTION

ATTENTION QUESTIONS?

SOPHIE GAGNEUR DPG FRÜHJAHRSTAGUNG DORTMUND 2021

THANK YOU FOR YOUR ATTENTION

WORKING PRINCIPLE

Phase $I: Q_1$ is on and Q_2 is off for a time t_{on}

- Current through the coil increases linearly
- The coil provides the current for the load
- The excess current is stored in the capacitor

WORKING PRINCIPLE

Phase II: Q_1 is off and Q_2 is on for a time t_{off}

SOPHIE GAGNEUR VERTEIDIGUNG DER MASTERARBEIT

- Voltage source is disconnected
- Current through the coil decreases linearly
- Current from the coil is not sufficient
- Current deficit compensated by the capacitor

NOISE IN A SWITCHING BUCK CONVERTER

SOPHIE GAGNEUR VERTEIDIGUNG DER MASTERARBEIT

3/16/2021

HIGH FREQUENCY NOISE

- Main cause for HF noise: current loops
- The changing magnetic field created by the loop produces an inductive voltage:

$$V_L = -\frac{d\phi}{dt} = -L \frac{di}{dt},$$
$$\phi = \int_A B \cdot dA = L \cdot I$$

- Strongly depends on loop geometry
- High di/dt loop must be kept as small as possible
- Noise from the input can couple to the output

LOW FREQUENCY NOISE

- Combination of inductor ripple current and output capacitor impedance
- Different parasitic components have different influence on the output signal

SOPHIE GAGNEUR VERTEIDIGUNG DER MASTERARBEIT

TEST BEAM MEASUREMENTS

- To determine efficiency and noise level threshold scans were performed
 - Signal in a pixel is just registered if its level is above a certain threshold
 - The lower the threshold the higher the efficiency
 - But higher noise level too
- One scan performed with a second LC filter and one scan without
- Short measurement time was low statistics

3/15/2021

RE-DESIGNED OUTPUT FILTER

 $V_{ripple} = 7.5 \,\mathrm{ImV}$

3/15/2021

LC FILTER CALCULATIONS

Design rules

- Second coil L₂ should be much smaller than L₁:
 - $L_2 = \frac{1}{10} \cdot L_1 = \frac{1}{10} \cdot 550nH = 55nH$
- Increase of the output capacitor \rightarrow 541 µF
- Second capacitor should be much smaller than the first
 - If not: stability problems can occur
 - $C_1 \rightarrow 47 \mu F$

Stability test

TEMPERATURE INTERLOCK SYSTEM

