

Securing the future of Nuclear Energy

MELCOR/ORIGEN Integration

2024 European MELCOR Users' Group Meeting April 15th-18th, 2024

MELCOR

SAND2024-03576PE

ENERGY NISA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

Effort underway to integrate ORIGEN and MELCOR

- ORIGEN functionally replaces MELCOR Decay Heat package (DCH)
- Facilitated with ORNL-developed Melcor ORigen TidY (MORTY) interface
- An alternate DCH "physics" in the language of modernized MELCOR architecture
- Modernized development practices

Review

- ORIGEN
- Conventional DCH in MELCOR
- Integration: assumptions, requirements, implementation, and development

Progress Report (since MCAP '23 and AMUG '23)

- MORTY interface
- Modernized development
- HPR and fixed fuel with a single COR ORIGEN region
- MSRE and fluid fuel with one (and more) CVH ORIGEN regions

Summary

ORIGEN

ORIGEN does isotopic depletion analysis and enables computation of timedependent concentrations, activities, and radiation source terms accounting for transmutation, fission, and decay

Arrange isotopic equations into a system with a solution that – spatially – applies "at a point" or that could be viewed as an "average over a volume"

Isotopic equations can account for "continuous feed/removal processes" couched as decay constants and/or elements of a source vector

$$\frac{dN_i}{dt} = \sum_{j \neq i} (l_{ij}\lambda_j + f_{ij}\sigma_j\Phi)N_j(t) - (\lambda_i + \sigma_i\Phi)N_i(t) + S_i(t),$$

where

- N_i = amount of nuclide *i* (atoms),
- λ_i = decay constant of nuclide *i* (1/s),
- l_{ij} = fractional yield of nuclide *i* from decay of nuclide *j*,
- σ_i = spectrum-averaged removal cross section for nuclide *i* (barn),
- f_{ij} = fractional yield of nuclide *i* from neutron-induced removal of nuclide *j*,
- Φ = angle- and energy-integrated time-dependent neutron flux (neutrons/cm²-s), and
- S_i = time-dependent source/feed term (atoms/s).

Decay Heat Package

DCH input sets:

- Initial DCH/RN1 class mass inventory via:
 - Element-wise initial mass, and
 - Grouping of elements into classes
- Decay power time tables [time vs W/kg] for each element
- Also any reference core scaling and whole-core power rules (not applicable here)

During a calculation, MELCOR transports radionuclide class mass and loads decay heat in core cells, in CV phases, on HS surfaces, and on filters by reference to DCH

- Radionuclide class mass transfers, the decay power follows the mass
- DCH "decay" does not result in a movement of radionuclide mass between classes
- DCH "decay" cannot alter the fission product chemistry
- Only one DCH decay rule (table) per chemical element in a given DCH/RN1 class which applies to all DCH/RN1 class mass no matter where it resides (COR, CVH, HS, filters)

For certain applications – particularly non-LWR - fission product chemistry and the impact of radioactive decay could be crucial to radionuclide transport/release

ORIGEN/MELCOR capabilities should be agnostic to reactor type

Assumptions:

- Pure radioactive decay (no fission product build-in under neutron flux)
- MELCOR and ORIGEN have corresponding spatial domains
 - ORIGEN has "materials" consisting of mass for 2000+ isotopes
 - MELCOR has "ORIGEN regions" consisting of element AND corresponding class mass
- Initialize MELCOR ORIGEN regions and ORIGEN material with ORIGEN JSON file(s)
- Where DCH executes, ORIGEN:
 - Computes isotopics and tallies elements on all materials,
 - Updates elementwise tally on all corresponding ORIGEN regions, and
 - Uses an interface to facilitate the update
- As MELCOR goes on:
 - Class-wise transfer processes move class mass between ORIGEN region spatial domains,
 - Element masses on ORIGEN regions are updated accordingly,
 - Element mass moves between ORIGEN regions are tabulated, and
 - ORIGEN material isotopics are updated accordingly as facilitated by an interface
 - Defer the issue of any MELCOR-side chemistry modeling (individual element moves)
- All DCH MELGEN/MELCOR text outputs, plot variables, CF arguments, etc. are altered to meaningfully reflect the elementwise tracking on ORIGEN regions
- New DCH input structures are created as needed:
 - ORIGEN "activated" as alternate DCH physics model
 - ORIGEN region definition and specification

Ultimate Requirements:

- User can model arbitrarily many ORIGEN regions of any type, where types include:
 - COR regions consisting of one or more fueled core cells
 - CVH regions consisting of one or more control volumes (to include all phases)
 - HS regions consisting of one or more heat structure surfaces
 - FLT regions consisting of one or more RN2 filters
- Modernized development approach
- Account for future/near-term development and anticipated capabilities
 - GRTR and MELCOR-side element-wise chemistry
 - COR component surfaces as hosts for radionuclide class inventory (e.g. deposition)
- Sufficient user control on ORIGEN execution (not necessarily every time-step)
- MELCOR class-wise radionuclide transport unabridged
- Conservation of mass demonstrated in modified MELGEN/MELCOR text outputs
- New plot variables and CF arguments
- Updated calculations for existing plot variables and CF arguments
- Full MELCOR documentation
 - ORNL developing ORIGEN-side MORTY documentation
 - DCH Users' Guide for input requirements
 - DCH Reference Manual for modeling/capabilities details
 - Example applications

Implementation:

DCH_ORG BURNFUEL

DCH_ORGCOR 1

! REGION NAME JSON NAME 1 'ALLCORCELLS'

'JSON NAME'

RESPONSE NAME MTU SCALAR 'RESP_NAME' 1.0

CF_RANGE 'ALLCORCELLS' CELLS 10 **CONSTRUCT 1** 1

ALL

Development – An iterative process involving:

- New ORIGEN module/submodule
 - Data and procedure polymorphism
 - Element-wise mass inventory tracking
 - ORIGEN region tracking
- MORTY interface usage/debugging (SNL) and development (ORNL)
- Modernized input parser (DCH primarily)
- Field managers and physics managers (in approximate order of run step execution)
 - DCH Element/class arrangement, global class inventory tracking, access to ORIGEN
 - COR Class-wise radionuclide transport processes (e.g. gap release, fuel failure)
 - HS Class-wise radionuclide transport processes (e.g. deposition, resuspension)
 - RN1/GRTR Intravolume class-wise radionuclide transport processes (form-wise transfers)
 - CVH/RN2 Intervolume class-wise radionuclide class advection
 - RN2 Class-wise radionuclide class deposition on filters
- Testing on demonstration problems
 - HPR Solid fuel, COR ORIGEN region(s), have a SCALE DCH-only comparison
 - MSRE Fluid fuel, CVH ORIGEN region(s), have a SCALE DCH-only comparison

Prioritize development by NRC demonstration obligations (e.g. MSRE off-gas first)

Progress Report - MORTY

Melcor ORigen TidY (MORTY) Interface

Functionality not yet fully explored in practice beyond stand-alone unit tests

"ORIGEN implementation"

- Initialize and load ORIGEN material isotopes from JSON(s) during MELGEN execution
- Advance time, get updated decay heat and mass by element by ORIGEN material
- Update ORIGEN material isotopics after MELCOR-side ORIGEN region transfers

Bugs found here and there as development exercises MORTY capabilities

- To be expected...standard development cycle
- Appreciate the timely fixes from ORNL

Future documentation under the SCALE banner by ORNL

Progress Report – Development

In terms of code architecture:

- ORIGEN module/submodule splits data from implementation
 - Region elementwise inventory tracking
 - Implementation of ORIGEN initialization, decay calculations, and material updating
 - Various miscellaneous functions...operations on data encapsulated in ORIGEN module
- Physics manager used extensively to:
 - Instantiate alternate ORIGEN physics where DCH would ordinarily do a table look-up
 - Do additional/alternative initializations (e.g. from JSON not DCH MELGEN input)
 - Do alternative DCH, COR, and RN1 accounting operations and output edit prints
 - Do additional/alternative operations for region-wise class-wise transfer processes

In terms of physical modeling:

- Online:
 - COR region(s) and core cell (fuel + gap) radionuclide inventory and decay power tracking
 - CVH region(s) and aerosol form only radionuclide inventory and decay power tracking
 - Advection (CVH/RN2) as a means of class-wise ORIGEN region-wise transfer
 - ORIGEN material updates (of isotopics) due to advection and attending element/class move
 - DCH/COR/RN1 accounting for the above
- To-do:
 - Likewise for HS surfaces and filters
 - Address the full spectrum of possible ORIGEN region-wise transfer mechanism (long list)
 - So much more...including demonstrations on non-LWR plant decks

Progress Report – HPR Demo

DCH-only vs ORIGEN JSON, cycle 0, decay power

		DCH		ORIGEN				
Class Number	Class Name	Class Specific Power	Class Power	Class Specific Power	Class Power			
1	XE	2.27736E+04	3.01334E+04	2.27736E+04	3.01333E+04			
2	CS	4.54254E+04	5.37956E+04	4.54254E+04	5.37956E+04			
3	BA	5.34472E+04	3.85400E+04	5.34472E+04	3.85400E+04			
4	I	6.90674E+05	3.63647E+04	6.90674E+05	3.63647E+04			
5	TE	1.11599E+05	<mark>1.54345E+04</mark>	1.11599E+05	<mark>1.54344E+04</mark>			
6	RU	2.56859E+03	1.95167E+03	2.56859E+03	1.95167E+03			
7	MO	3.61492E+04	4.43293E+04	3.61492E+04	4.43293E+04			
8	CE	3.85053E+03	<mark>2.60087E+04</mark>	3.85053E+03	<mark>2.60088E+04</mark>			
9	LA	3.05700E+04	6.99030E+04	3.05700E+04	6.99030E+04			
10	UO2	<mark>1.252713E+00</mark>	5.70672E+03	<mark>1.25271E+00</mark>	5.70670E+03			
11	CD	1.14154E+06	1.23664E+04	1.14154E+06	1.23664E+04			
12	AG	2.71994E+05	4.61502E+03	2.71994E+05	4.61502E+03			
13	BO2	0	0	<mark>1.45216E+04</mark>	<mark>4.19175E-09</mark>			
14	H2O	0	0	0	0			
15	CON	0	0	0	0			
16	CSI	3.60597E+05	0	0	0			
17	CSM	4.29653E+04	0	0	0			
TOTAL			3.39149E+05		3.39149E+05			

DCH-only vs ORIGEN JSON, cycle 0, RN1 class masses in core cells

For cell IA=2, IR=3, IC=1 (IFU), the DCH route yields:

IR IA KCMP CLASS MASS(KG)

2 3 1 3.754E-03 3.360E-03 2.046E-03 1.494E-04 3.924E-04 2.156E-03 3.480E-03 1.917E-02 6.488E-03 1.293E+01 3.074E-05 4.814E-05 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 DECAY HEAT = 9.6233E+02 WATTS

For the same cell and component, the ORIGEN route yields:

IR IA KCMP CLASS MASS(KG)

2 3 13.754E-033.360E-032.046E-031.494E-043.924E-042.156E-033.480E-03 1.917E-026.488E-031293E+013.074E-054.814E-058.191E-160.000E+00 0.000E+0000.000E+0000E+00 DECAY HEAT = 9.6233E+02 WATTS Computed as classes from element mass on DCH_EL using RN1_FPN

Computed as sums over elements in classes according to DCH_CL, with element mass from JSON using RN1_FPN

Progress Report – HPR Demo

DCH-only vs ORIGEN JSON, cycle 0, component-wise cell decay power

IR	IA	FUEL	MATRIX	REFLCTOR	FORMER	SUP-STR	NONS-STR	P-DEB	P-DEB-BY	
2	14	Ο.	0.	0.	0.	0.	0.	0.	0.	
2	13	0.	0.	0.	0.	0.	0.	0.	0.	
2	12	822.1	0.	0.	0.	0.	0.	0.	0.	
2	11	1041.	0.	0.	0.	0.	0.	0.	0.	
2	10	1265.	0.	0.	0.	0.	0.	0.	0.	
2	9	1457.	0.	0.	0.	0.	0.	0.	0.	
2	8	1579.	0.	0.	0.	0.	0.	0.	0.	
2	7	1594.	0.	0.	0.	0.	0.	0.	0.	
2	6	1492.	0.	0.	0.	0.	0.	0.	0.	
2	5	1294.	0.	0.	0.	0.	0.	0.	0.	
2	4	1072.	0.	0.	0.	0.	0.	0.	0.	
2	3	962.3	0.	0.	0.	0.	0.	0.	0.	
2	2	-	-	-	-	0.	0.	0.		
2	1	-	-	-	-	0.	0.	0.		

TR	IA	FOEL	MATRIX	REFLCTOR	FORMER	SUP-STR	NONS-STR	P-DEB	P-DEB-BY
2	14	0.	0.	0.	0.	0.	0.	0.	0.
2	13	0.	0.	0.	0.	0.	0.	0.	0.
2	12	822.1	0.	0.	0.	0.	0.	0.	0.
2	11	1041.	0.	0.	0.	0.	0.	0.	0.
2	10	1265.	0.	0.	0.	0.	0.	0.	0.
2	9	1457.	0.	0.	0.	0.	0.	0.	0.
2	8	1579.	0.	0.	0.	0.	0.	0.	0.
2	7	1594.	0.	0.	0.	0.	0.	0.	0.
2	6	1492.	0.	0.	0.	0.	0.	0.	0.
2	5	1294.	0.	0.	0.	0.	0.	0.	0.
2	4	1072.	0.	0.	0.	0.	0.	0.	0.
2	3	962.3	0.	0.	0.	0.	0.	0.	0.
2	2	-	-	-	-	0.	0.	0.	
2	1	-	-	-	-	0.	0.	0.	

I	FUEL	MATRIX	REFLCTOR	FORMER	SUP-STR	NONS-STR	P-DEB	P-DEB-BY	IR IA	FUEL	MATRIX	REFLCTOR	FORMER	SUP-STR	NONS-STR	P-DE
	0.	0.	0.	0.	0.	0.	0.	0.	15 14	0.	0.	0.	0.	0.	0.	0.
13	0.	0.	0.	0.	0.	0.	0.	0.	15 13	0.	0.	0.	0.	0.	0.	0.
12	1883.	0.	0.	0.	0.	0.	0.	0.	15 12	1883.	0.	0.	0.	0.	0.	0.
11	2385.	0.	0.	0.	0.	0.	0.	0.	15 11	2385.	0.	0.	0.	0.	0.	0.
10	2896.	0.	0.	0.	0.	0.	0.	0.	15 10	2896.	0.	0.	0.	0.	0.	0.
9	3338.	0.	0.	0.	0.	0.	0.	0.	15 9	3338.	0.	0.	0.	0.	0.	0.
8	3616.	0.	0.	0.	0.	0.	0.	0.	15 8	3616.	0.	0.	0.	0.	0.	0.
7	3652.	0.	0.	0.	0.	0.	0.	0.	15 7	3652.	0.	0.	0.	0.	0.	0.
6	3417.	0.	0.	0.	0.	0.	0.	0.	15 6	3417.	0.	0.	0.	0.	0.	0.
5	2964.	0.	0.	0.	0.	0.	0.	0.	15 5	2964.	0.	0.	0.	0.	0.	0.
4	2456.	0.	0.	0.	0.	0.	0.	0.	15 4	2456.	0.	0.	0.	0.	0.	0.
3	2204.	0.	0.	0.	0.	0.	0.	0.	15 3	2204.	0.	0.	0.	0.	0.	0.
2	-	-	-	-	0.	0.	0.		15 2	-	-	-	-	0.	0.	0.
1	-	-	-	-	0.	0.	0.		15 1	-	-	-	-	0.	0.	0.

EDIT OF TOTAL POWER INPUT TO CORE	EDIT OF TOTAL POWER INPUT TO CORE					
DECAY POWER = 3.39149E+05 W	DECAY POWER = 3.39148E+05 W					
FISSION POWER = 0.00000E+00 W	FISSION POWER = 0.00000E+00 W					

Progress Report – HPR Demo

DCH-only vs ORIGEN JSON, Total Fission and Decay Power

- Time trace shows excellent agreement b/t SCALE-supplied W/kg tables and ORIGEN
- Point kinetics transient with scram and negative reactivity insertion at time zero

Progress Report – MSRE Demo

MSRE from NRC public demonstration workshop, but

- Add CVH ORIGEN regions (each a CF range of CVs) tracking to multiple JSON files
- Assume initial radionuclide mass is distributed in the primary loop...
 - Uniformly by volume across all CVs belonging to a region correlating to a JSON, and
 - As aerosol in the pool
- Work through:
 - CVH form-wise (e.g. aerosol) element/class-wise inventory accounting
 - CVH form-wise (e.g. aerosol) decay power addition to host phase (e.g. pool)
 - CV-to-CV class-wise advection of form-wise (e.g. aerosol) mass
 - MELCOR-to-ORIGEN updates of region/material elements

From there, work towards:

- HS surfaces and HS ORIGEN regions,
- Filters and FLT ORIGEN regions,
- More region-wise transfer processes and accounting,
- A scenario that releases to an off-gas system,
- Scenarios that demonstrate fluid fuel point kinetics...
 - Alongside ORIGEN/MELCOR,
 - With possible feedback terms informed by ORIGEN ?
 - With delayed neutron precursors informed by ORIGEN?

Summary

Reviewed ORIGEN and conventional DCH functions in MELCOR

Discussed MELCOR/ORIGEN integration:

- Assumptions,
- Requirements,
- Implementation, and
- Development

Gave updates on:

- MORTY interface,
- MELCOR development,
- HPR demonstration, and
- MSRE demonstration (in progress)

More to come at CSARP/MCAP in June