

MELCOR code use for uncertainty and sensitivity analysis of severe accident with operator actions

EMUG meeting

Vorobyov Y. (yy_vorobyov@sstc.ua)

Contents

- 1. MELCOR model
- 2. Uncertainty Analysis Set-up
- 3. Uncertainty Analysis FOMs
- 4. MELCOR Runs
- 5. Uncertainty Analysis Results Example
- 6. Sensitivity Analysis Results Example
- 7. Code-model numerical noise/scatter
- 8. Code-model failure rate
- 9. MELCOR Uncertainty/Sensitivity Analysis Applications

10. Conclusions

VVER-1000 Uncertainty Analysis Overview

Overview

• Part of the work is performed in the frames of MUSA project

MUSA

 This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847441

Results

 This presentation reflects only the author's view, and the European Comission is not responsible for any use that may be made of the information it contains

MELCOR model

Approach

• Simple fast running model

RCS

• Single + triple loop

Reactor

• Simple + 6 CV core

Secondary

• Simple SGs

Containment

• All compartments + cavity

Reactor + HAs

→→→ to CV316 133

110

from CV107 114

PRZR + bubbler

119

118

117

116

139

129

Loop1 + SG1 primary

RADIATION SAFETY

EMUG Meeting

MELCOR model

Cavities

- CAV1 under reactor
- CAV2 on containment floor

Containment venting

• FL with filter

Model preliminary testing

- LOOP
- LB LOCA
- SB LOCA

MELCOR model

Core model

- 3 rings
- 6 CV COR
- 10 axial for fuel part

Unit

• VVER-1000

Initial Event

Station Blackout

Operator actions

 Open 3, 2 or 1 PORVs after enter SAMG (450C CET + delay)

Features/Failures

- CNT venting operable (setpoints 5-3kgf/cm2, Decontamination Factor 1000)
- No ECCS
- No CNT sprays
- 1 day sequence time

Code

• MELCOR 2.2.21402

Uncertainty tool

• SUSA 4.0

Number of runs

 100 for mixed PORVs number (additional 100 for 3 PORVs open, 100 for 2 PORVs open, 100 for 1 PORV open)

Method

- Uncertainty propagation approach
- Wilks 2nd order (93 runs min)
- Latin Hypercube sampling
- Failed cases are restarted with Dtmax change or small other params change

Uncertainty parameters categories analyzed

- Source term phenomena
- Core heat-up
- Core degradation
- In-core thermal-hydraulics
- Corium downward motion / Corium slumping
- Corium/debris transfer to cavity
- MCCI
- Containment thermal-hydraulics
- Containment leak
- Hydrogen combustion
- Containment venting
- Equipment setpoints
- SAM (PORV opening)
- Numerics

EMUG Meeting Italy, Rome, April 15 - 18, 2024

Methods and references

- State-of-art NUREGs
- Experiment reports
- MUSA project experience
- MELCOR code manuals
- Engineering judgment (EJ)

Uncertainty parameters

- 43 total
- All independent

Uncertainty parameters

• 43 total

Note*	Name	Short description		Range of Variation	PDF Type
Par. #			value		
1	RN1_GAP00_CLFAIL	Gap Release Temperature	1173	CLFAIL = 1173 +/-100 K	Uniform
2	RN_CHI	Dynamic shape factor		CHI = 1.0 - 2.0	Uniform
3	RN_RHONOM	Aerosol density		RHONOM = 1000-4120 kg/m ³	Uniform
4	RN_FSLIP	Slip factor	1.257	FSLIP = 1.257 +/- 20%	Uniform
5	RN_STICK	Sticking coefficient	0.75	STICK = 0.5-1.0	Uniform
6	RN_FTHERM	Thermal accommodation coefficient	2.25	FTHERM = 2.25 +/-20%	Uniform
7	RN2_FLT_DFG	Global decontamination factor	1000	DFG= default +/- 20%	Uniform
8	COR_FCELR	Radial radiation exchange factor	0.1	FCELR = 0.1 +/- 0.05	Uniform
9	COR_FCELA	Axial radiation exchange factor	0.1	FCELA = 0.1 +/- 0.05	Uniform
10	COR_SC1104_3	Cladding emissivity	0.81	SC1104(3) = 0.81 +/-20%	Uniform
11	COR_SC1104_5	Cladding emissivity	0.76	SC1104(5) = 0.76 +/-20%	Uniform
12	COR_SC1104_1	Cladding emissivity	0.325	SC1104(1) = 0.325 +/-20%	Uniform
13	DCH_TFSCAL	Thermal decay heat multiplier	1	TFSCAL = 1.0 +/- 0.1	Uniform
14	COR_OX_SC1001(1,2)	Metallic Cladding Oxidation Rate Constant Coefficient, steam	26.7	SC1001(1,2) = 26.7 +/- 20%	Uniform
15	COR_OX_SC1001(3,2)	Metallic Cladding Oxidation Rate Constant Coefficient, oxygen	26.7	SC1001(3,2) = 26.7 +/- 20%	Uniform
16	COR_OX_SC1001(3,1)	Metallic Cladding Oxidation Rate Constant Coefficient, oxygen	87.9	SC1001(3,1) = 87.9 +/- 20%	Uniform
17	COR_OX_SC1001(1,1)	Metallic Cladding Oxidation Rate Constant Coefficient, steam	29.6	SC1001(1,1) = 29.6 +/- 20%	Uniform
18	COR_EUT_TM	UO2-ZrO2 eutectics	2500	COR_EUT, TM = 2500 K +/- 100 K	Uniform

EMUG Meeting

Uncertainty parameters

• 43 total

Note*	Name	Short description		Range of Variation	PDF Type
Par. #			value		
19	COR_SC1131(2)	Maximum ZrO2 temperature permitted to hold up molten Zr in CL	2400	SC1131(2) = 2400 K +/- 100 K	Uniform
20	COR_SC1132(1)	Temperature to which oxidized fuel rods can stand in the absence of unoxidized Zr in the cladding	2600	SC1132(1) = 2600 K +/- 100 K (UNIFORM)	Uniform
21	COR_TSSFAI	Supporting structure failure temperature	1273	TSSFAI = 1273 K +/- 100 K	Uniform
22	COR_CMT_FUOZR	Transport parameter for UO2 in molten Zircaloy	0.2	FUOZR = 0.2 +/- 0.1	Uniform
23	COR_CHT_HFRZZR	Refreezing heat transfer coefficient for Zircaloy	7500	HFRZZR = 7500 +/- 5000 W/m ² /K	Uniform
24	COR_CHT_HFRZZX	Refreezing heat transfer coefficient for ZrO2	7500	HFRZZX = 7500 +/- 5000 W/m ² /K	Uniform
25	COR_CHT_HFRZUO	Refreezing heat transfer coefficient for UO2	7500	HFRZUO = 7500 +/- 5000 W/m ² /K	Uniform
26	COR_EDR_DHYPD_CORE	Particulate Debris Equivalent Diameter (Core Region)	0.01	For core region DHYPD = $0.01m + - 0.005m$	Uniform
27	COR_EDR_DHYPD_LP	Particulate Debris Equivalent Diameter	0.002	DHYPD = 0.002m +/- 0.001m	Uniform
28	COR_ZP_PORDP	Porosity of particulate debris	0.4	PORDP = 0.4 +/- 0.1	Uniform
29	COR_LP_HDBH2O	HTC from in-vessel falling debris to pool	2000	HDBH2O = 2000 +/- 1000 W/m ² /K	Uniform
30	COR_LP_VFALL	Velocity of falling debris	0.01	VFALL = 0.01 +/- 0.005	Uniform
31	CVH_SC4407(1)	Pool bubble rise velocity	0.3	SC4407(1) = 0.3 m/s +/- 0.1 m/s	Uniform
32	CVH_SC4407(11)	Pool maximum void fraction	0.4	CVH, SC4407(11) = 0.4 +/- 0.1	Uniform
33	CAV_RT_NCFREL	Overflow height from CAV1 to CAV2	0.325	NCFREL = 0.15-0.5 m	Uniform
34	CONT_LEAK_AREA_MUL	Containment leak area multiplier	1	Area VALUE +/- 50%	Uniform
35	PAR_EFF_FACTOR	PARs model efficiency multiplier	1	PAR, VALUE +/- 20%	Uniform

EMUG Meeting

Uncertainty parameters

• 43 total

Note*	Name	Short description	Reference	Range of Variation	PDF Type	
Par. #			value			
36	CFVS_Open_P	CFVS opening pressure setpoint	5	nominal setpoint of 5 bar +/-10%	Uniform	
37	DTMAX	Maximum timestep	0.105	DTMAX = 0.01 0.2 s	Uniform	
38	PORV1_AVAIL	PRZ PORV availability		3	PORV amount operable	Discrete
39	PORV_OP_DELAY	Time delay for manual RCS depressurization PORV after CET increase above 450 C	n via PRZ	1350 †	delay 0-2700s	Uniform
40	COR_SC1020(1)	Radial debris relocation time constant (solid deb	360	TSPRS = 180-540	Uniform	
41	COR_SC1020(2)	Radial debris relocation time constant (molten de	60	TSPRM = 30-90	Uniform	
42	CDISPN	Discharge coefficient for ejection of debris		1	CDISPN = 0.5-1.5	Uniform
43	GAMMA	Agglomeration shape factor		2	RN, GAMMA = 1.0 3.0	Uniform
			/			
Maximum calculation Timestep		Number of PRZ SVs open with F probability: (PRZ SVs operator	open del action)	ay	
ENULO Mastian		3 PORVs open 0.729 2 PORVs open 0.243 1 PORV open 0.027 0 PORVs open 0.001				

Uncertainty Analysis FOMs

Variables of interest (Figures of Merits, FOMs)

- Xe release to environment (MUSA)
- Cs release to environment (MUSA)
- Cs airborn in containment
- Gap release time
- H2 generation in core
- H2 generation in cavities
- CFVS open time
- LH failure time
- Cavity ablation depth
- CFVS filter thermal load (aerosols)

12

MELCOR Runs

Sampled number PORVs open

"Mixed" PORVs set

- 3, 2 or 1 PORV open (sampled)
- Other UPs sampled
- Total 100 runs

"Mixed" PORVs set

- 3 PORVs 72 sequences
- 2 PORVs 25 sequences
- 1 PORV 3 sequences

Fixed number PORVs open

3 PORVs set

- Fixed 3 PORVs open
- Other UPs sampled
- Total 100 runs

2 PORVs set

- Fixed 2 PORVs open
- Other UPs sampled
- Total 100 runs

1 PORV set

- Fixed 3 PORVs open
- Other UPs sampled
- Total 100 runs

13

Italy, Rome, April 15 - 18, 2024

EMUG Meeting

MELCOR Runs

MELCOR 100 runs statistics ("mixed" PORVs)

without restarts (<u>easy cases</u>)
with restarts (DT change) (<u>medium cases</u>)
with restarts (DT + param. change) (<u>hard cases</u>)

MELCOR runs performance

MELCOR Runs

TH typical behavior

- Main difference for 3, 2 and 1 PORVs open
- Below cases with central UPs
- HAs are injecting (P<60kgf/cm2)

RCS pressure

- 3 PORVS faster decrease
- 2 PORVS smooth decrease
- 1 PORV periodical decreaseincrease (long periods)

EMUG Meeting

Italy, Rome, April 15 - 18, 2024

Uncertainty Analysis Results Example

Uncertainty analysis results example (H2 generation in reactor)

Can be given as mean with tolerance limits • (0.95, 0.95)

"Mixed" PORVs set

- Mean
- Median
- TL
- Std. dev.

503kg 369kg, 812kg

529kg

106kg

Hydrogen generated in the core, kg (runs)

Hydrogen generated in the core

Italy, Rome, April 15 - 18, 2024

EMUG Meeting

Sensitivity analysis results (Pearsons, H2 generated in reactor)

Scalar sensitivity analysis

Scalar sensitivity analysis

Consequence 2 (no Transf.); 43 parameters considered; n =100; R**2=0.7629

Outcomes:

- Each equipment configuration has its own main sensitivities
- Mixed analysis sensitivities are VERY different

EMUG Meeting Italy, Rome, April 15 - 18, 2024

Index of Parameter

H2 generated in reactor, scatter plots

Outcomes:

- MELCOR results scatter
- H2 depends on DTmax for 3 PORVs
- Scatter plots are useful

Example scatter plots (high VS low scatter results)

moderate scatter

low scatter

2 PORVs open (100runs) H2 in cavities from Decay heat 1 PORV open (100runs) H2 in cavities from Decay heat

high scatter

1 PORV open (100runs) Gap release time from Decay heat

Outcomes:

- MELCOR results scatter depends on parameters and time
- Sequence-dependent sensitivities

70000

60000

50000

30000

20000

10000

٠

40000 E 30000

CFVS open time, scatter plots (dep. on Open setpoint and **Decay heat)**

Outcomes:

- CFVS can open early and later
- With increase of decay heat open time decreases

DCH TFSCAL, #13

2 PORVs open (100runs)

70000

RV failure time, scatter plots (from Decay heat)

Italy, Rome, April 15 - 18, 2024

FOR NUCLEAR AND

RV failure time, scatter plots (from DTMAX - timestep)

CAV1 ablation depth, scatter plots (from Overflow height)

Outcomes:

- For 3 PORVs statistically ablation in CAV1 is stopped for overflow height less than 0.25m with maximal ablation depth 0.46m
- For 2 PORVs cases statistically ablation in CAV1 is stopped for overflow height less than 0.29m with max ablation depth 0.48m

Code-model numerical noise/scatter

3 PORVs sensitivity

0.10

DTMAX, s

0.11

0.12

Code/model numerical noise/scatter estimation

- Performed for 3 PORVs with 0.1s base DTmax ٠
- DTmax is changed by 1e-8s ... 0.02s both ways ullet
- Analyzed only calcs without code stop (one-٠ through)

800

750

700

650

600

550

500

450

400

350

300

250

200

0.07

0.08

0.09

H₂ mass, kg

ATE SCIENTIFIC AND TECHNICAL CENTER FOR NUCLEAR AND

Code-model numerical noise/scatter

Code/model numerical noise/scatter estimation

EMUG Meeting

Italy, Rome, April 15 - 18, 2024

Code-model numerical noise/scatter

Code/model numerical noise/scatter estimation

Outcomes:

- The code result <u>does NOT</u>
 <u>converge</u> to base value (always scattered, tends to decrease)
- This scatter is **anavoidable**
- Scatter of MELCOR results CAN NOT be LESS than code/model noise
- Scatter <u>can mask</u> the correlation

26

EMUG Meeting

Code-model failure rate

Code/model success statistics

- Performed for 3 PORVs noise
- Successful and failed cases statistics

EMUG Meeting

Outcomes:

- Total 221 cases run, 77 success (35%), 144 failed (65%)
- Code fails in decreasing order of priority at
 - Core degradation phase
 - Early ex-vessel phase
 - Early TH phase
 - Late ex-vessel phase

Importance parameters ranking for FOMs

Can be used to estimate:

- Parameter important or not
- Areas of deeper modeling needed
- Areas of simpler modeling

Examples of LOW sensitivity

- Time of gap release from actions delay (1 PORV)
- LH failure time from decay heat (2 PORVs)

Importance parameters ranking for FOMs

Examples of HIGH sensitivity

- Ablation depth in cavity from melt overflow height (3 PORVs)
- H2 generated in cavity from melt overflow height (3 PORVs)

CENTER FOR NUCLEAR AND

Important parameters for FOMs (table below)

- Detectable high sensitivity in MELCOR calculations
- In table N PORVs for sensitive cases
- Other sensitivities are not detected (<0.2)
- Reasons not detecting No any OR code-model scatter

Param.	Хе	Cs	Gap	H2	H2	CFVS	LH time	CAV	CFVS
	release	release	time	reactor	cavities	time		abl.	load
#13, Decay heat	3,2,1	2,1	3,2,1	2	3,2,1	3,2,1	3,1		2,1
#20, Zr upper Temperature				3					
#28, COR porosity				2					
#33, CAV overflow height	2				3,2,1			3,2,1	
#36, CFVS open P						3,2,1			
#37, DTMAX				3					
#39, PORV open delay		1	3	1					1

SAMGs optimization

- Use of population MEAN values ۲
- Lowest Cs release to ENV for 3 PORVs (optimal) ٠
- Lowest H2 generation for 3 PORVs (optimal) ٠
- Lowest CFVS filter load for 3 PORVs (optimal) ۲
- But for 3 PORVs the earliest RV failure ! (optimal?) •

400

350

300

250

200

150

100

50

0

10000

thermal load, kWt

Filter

Mean, 3 PORVs

Mean, 2 PORVs

Mean. 1 PORVs

Mean. mixed PORVs

20000

30000

Cs release to environment, %

32

MELCOR Uncertainty/Sensitivity Analysis Applications

SAMGs optimization

- Scatter plot of analysis can show optimal areas of actions
- Example for gap release time
- For operator delay 0...600s the gap release is always later (optimal)
- Strategy choice justification

Gap release time depending on PORV operator actions delay

Setpoints optimization

- Scatter plot of analysis can show optimal setpoints
- Example for CFVS open time
- Setpoint >5.3kgf/cm² would statistically exclude early CFVS opening for 3 PORVs

CFVS open time (FOM7) depending on parameter #36 (CFVS_Open_P - CFVS opening pressure setpoint)

33

34

MELCOR Uncertainty/Sensitivity Analysis Applications

Sensitivity analysis for code improvement

- Performed for 3 PORVs
- See the time-dependent correlation analysis for H2 generated in core

PCC for hydrogen generated in the core

Outcomes:

- Correlation to DTmax starts to grow at early ex-vessel phase
- MELCOR code H2 in core generation algorithm should be <u>checked</u> at this phase

Conclusions

MELCOR concerned conclusions

- MELCOR code is a **powerful** integral tool for uncertainty/sensitivity analysis
- MELCOR results have **anavoidable** scatter (verified)
- MELCOR scatter is **different** for different parameters and can mask the correlations
- MELCOR scatter range **increases** with transient progression (high after core damage)
- MELCOR UA results are powerful for SAMG optimization in statistical manner
- MELCOR run failures rate depends on the modeling but still significant
- MELCOR sensitivity analysis can be used for code **improvement**
- MELCOR application results are presented in CSARP in-kind report "Uncertainty and Sensitivity Analysis for VVER-1000 SBO Accident with Personnel Actions by MELCOR code. Methods, Insights and Conclusions"

Thank you for your time!

Please subscribe:

- sstc.ua
- f <u>sstc.com.ua</u>
- € <u>SSTC_NRS</u>
- SSTC NRS
- mrs@sstc.ua

