

Biomedical research in the PSI Center for Life Sciences

Dr. Jörg Standfuss::Laboratory Head and Group Leader 10.07.2024

PSI Center for Life Sciences and relevant Large-scale Infrastructure

Biology and Health at the PSI Center for Life Sciences

Three laboratories take advantage of accelerator-based technologies to analyze biological samples

Biomedical Research

Structural biology and the targeted development of new drugs Jörg Standfuss

 \Rightarrow Accelerators: SwissFEL, SLS

Nanoscale Biology Sub-cellular structures and cell states and their relevance for disease. G.V. Shivashankar

 \Rightarrow Accelerators: **SLS**

Radio Pharmaceuticals Diagnosis and therapy of tumours Roger Schibli

 \Rightarrow Accelerators: **HIPA, SINQ**

Proton Therapy Destruction of tumours and protection of healthy tissue Damian Weber

 \Rightarrow Accelerators: **COMET**

The PSI Center Life Science

highly competitive research center with a strong fundamental research program with potential for clinical applications

Primary mission of the center:

The research activities at CLS is to demonstrate the value of the unique infra-structure at PSI for **curiosity-driven** and **translational** research in the areas of **structural biology**, **molecular pharmacology**, **radiopharmaceutical sciences**. The division is also taking into consideration the increasing relevance of novel **imaging and computational approaches** in biomedical research.

Multi-scale biology at the PSI Center Life Sciences

Three laboratories bridge biological scales from molecules over cells to patients

Fig. M.2. The wavelength range of a FEL vs. a quantum laser. Source: Advanced Light Source, Berkeley.

Radiopharmacy and Health

Radioisotopes are everywhere:

Bananas contain Potassium-40. **But** you would have to eat **600 bananas per second** before you have to worry about radiation. The lab journal's from Marie Curie will be poisonous for the **next 1600 years** due to Radium-226.

Radiopharmacy finds:

- → Right kind of radioisotopes
- Methods to get them to the right spot to affect specific tissues

6

Radiopharmaceuticals: A Special Class of Drugs Offering Unique Opportunities in cancer diagnosis and therapy

Strategy of RP@CLS: Expand the *Toolbox* in Radiopharmacy

8

PSI hosts the leading Swiss competence center in radiopharmaceutical sciences

Ga-68 PET/CT

- Swiss-wide unique capabilities for medically relevant on-site radionuclide production and assessment for *clinical applications*.
- \rightarrow Bench-to-bedside capabilities for radio-pharmaceuticals for diagnosis and therapy
 - Leading research expertise in cancer diagnosis and treatment using radionuclides
 - Animal and GMP facility in radioactive zone
- \rightarrow Production of tracers for *local hospitals* (Ga68 PSMA)
- \rightarrow *PSI generated IP* is used to generate Spin-Offs and/or licence income

particles

149

Tb 161

y 87; 105; 180; 262...

PSI/UZH/USZ "Large National Research Infrastructure Project": IMPACT*

IMPACT will comprises the two new installations:

- TATTOOS: Targeted Alpha Tumor Therapy and Other Oncological Solutions → Increasing radionuclides yield by a factor 50 Radionuclides for diagnosis and therapy of cancer (and more)
- HIMB: High-Intensity Muon Beams → Increasing muon rate by up to a factor of 100
- approx. 70 MCHF total investment
- approx. 35 MCHF for subproject TATTOOS

*Isotope and Muon Production using Advanced Cyclotron and Target technologies

https://www.psi.ch/en/impact

Multi-scale biology at the PSI Center Life Sciences

Three laboratories bridge biological scales from molecules over cells to patients

Fig. M.2. The wavelength range of a FEL vs. a quantum laser. Source: Advanced Light Source, Berkeley.

Correlative multi-scale analysis in biology and medicine

Integrating atomic scale and low-resolution structural and dynamic information into a complex physiological context at cellular and multicellular level

- ETH domain institutes with Swiss-wide leading expertise in photon- and electron-based imaging methods
- High relevance for basic and applied biomedical activities
- High relevance for development of non-invasive diagnostics and therapies for cancer, neurodegenerative and infectious diseases.
- Opportunity for intensive collaboration with Swiss hospitals, Biotech and Pharma as well as opportunities for generation of start-up companies.

The Swiss Light Source 2.0 Project

The synchrotron Swiss Light Source is the main **"work horse" for structural analysis** of proteins at PSI**. X-ray imaging capacities** play a critical role for the strategic goal of CLS and the Center for Photon Science for establishing PSI as a center for **multi-scale imaging.**

X-ray imaging at SLS: the microvascular architecture of the mouse brain

Human Brain Project

Miettinen et al., BioInformatics 2019

Miettinen A. et al., unpublished, bioRxivv, March 16, 2021. https://doi.org/10.1101/2021.03.16.435616

Correlative Imaging @ CLS: Dynamic structural and functional organization of neurons in healthy and diseased brains

In vivo calcium imaging of hundreds of neurons simultaneously while the mouse performs navigation-based behavioral tasks in a virtual reality setting.

1. Building a two-photon calcium imaging pipeline to record neuronal activity in behaving mice (light microscopy)

2. Establishing an <u>expansion</u> X-ray nanotomography pipeline with PSD for imaging the brain ultrastructure at synaptic resolution (~20nm).

3. Functional and anatomical characterization of working memory-related neuronal network dynamics in retrosplenial cortex of healthy and Alzheimer's disease model mice (Electron Microscopy)

15

Micro-environmental Stimulus

• Forces: (Stretch, Compression, Shear)

• Soluble signals: (TNF α , TGF β , etc.)

Cellular microenvironment and genome regulation: Mechano-Genomics

Nuclear mechanotransduction

3D genome organization & gene expression

PSI

Shivashankar, Annual Reviews of Biophysics (2011) Uhler & Shivashankar, Nature Reviews Molecular Cell Biology (2017) Uhler & Shivashankar, Nature Reviews Molecular Cell Biology, (2020)

Multi-domain data integration/translation to link chromatin imaging and function

Yang, KD., et al., *Nature Communications*, *12*, *31*, *2021* Belyaeva, A., *Nature Communications*, *12*, 1024, 2021 Paysan, et al., *(under review, 2024)* Cammarata, et al., *(under review, 2024)*

PSI

Multi-scale biology at the PSI Center Life Sciences

Three laboratories bridge biological scales from molecules over cells to patients

Fig. M.2. The wavelength range of a FEL vs. a quantum laser. Source: Advanced Light Source, Berkeley.

Diffraction Image

Electron Density

Biomolecular Complexes

"We investigate how proteins and drugs regulate microtubule structure, function, and dynamics during cell division"

A comprehensive structural analysis of tubulin cancer drug binding sites

- XChem facility, Diamond
- Diamond Light Source Poised Fragment Library
- T₂R-TTL crystal system
- 708 fragments soaked
- 672 data sets collected
- 503 structures solved

- ➤ 56 fragments
- ➤ 10 binding sites, 6 novel
- ➤ 6 common binding motifs

Mühlethaler, Gioia et al. Angewandte Chem. 2021

Structural Biology is rapidly developing

- Structural biology has been a tremendous success.
- -> 220.130 structures of biological macromolecules and over 10 Noble prizes
- The molecular structures of most biologically relevant proteins have been solved.
- -> Acurate structure prediction by artificial intelligence
- Protein structure is important but ultimately protein motions determine function.
- -> New frontier in time-resolved structural biology

New X-ray sources for new Biology

Swiss Light Source 2.0

CLS/CPS Team

HVE Injector

Swiss Free Electron Laser

Microcrystals

Time-resolved Structural Biology

"We include time as a fourth dimension in structural biology to understand how protein dynamics relate to protein function"

Femtosecond dynamics Photochemical reaction of azo-Combretastatin A4 Image: Synchrotron CryoEM Image: Synchrotron CryoEM Image: Synchrotron CryoEM Computer Simulations

Molecular movies of proteins in action from SLS and SwissFEL

From Structures to Molecular Movies

PSI

Bringing time-resolved measurements to the molecular scale

Standfuss, Curr. Opin. Struc. Biol., 2019

Nogly et al., Science, 2018

Early user experiments from the CLS

🌒 PSI

Retinal proteins pave the way into a dynamic future for structural biology

Nogly et al., 2018, Science

Skopintsev et al., 2020, Nature

Mous et al., 2022, Science

Proton pump

- First "molecular movie" of retinal protein with atomic resolution and femtosecond resolution
- Simple Photosynthetic system

Sodium pump

- Ten molecular snapshots of
 sodium transport out of the cell
- Potential as optogenetic tool

Chloride pump

- SwissFEL and SLS resolves chloride transport into the cell
- Electrostatic gates explain
 transport

X-ray lasers allow us to observe structural changes in a wide temporal window

Blink of an eye $= 0.1 \, s$ Photocycle $= 0.01 \, s$ Retinal excitation $= 0.000\,000\,000\,000\,1 \, s$

-> But most proteins don't have photoswitches! ...or do they?

Photopharmacology – Range of Targets

Chemists are developing a large variety of light-switches to manipulate protein function

From: K. Hüll, J. Morstein, and Dirk Trauner, Chem. Rev., 2018

Photoswitchable Inhibitors of Cell Mitosis

Photocontrol of microtubule formation

Target of interest:

Photopharmacology:

Tubulin binding drugs:

- Kill cancer cells (Taxol chemotherapy)
- Reduce inflammation (Colchicine)
- Lower Covid-19 death rate (Sabizabulin)

Collaboration Steinmetz Group (PSI)

From: Borowiak *et al.*, *Cell*, 2015

Photopharmacology – The basic principle

Allows for remote spatial and temporal control of bioactivity by light

From: W. Velema, W. Szymanski & B. Feringa (2014)

Photon energy is translated into mechanical energy via a transition in molecular shape! ... but the mechanisms remain controversial

Photopharmacology "The Movie"

Dynamics within the colchicine site targeted by gout, cancer and covid-19 drugs

tubulin heterodimer

β-tubulin

azo-cis-Combretastatin A4

α-tubulin

Wranik et al., Nature Comm, 2023

Structural Biology of Membrane Proteins

"G protein-coupled receptors (GPCRs) and their signaling complexes are the target for >30% of small molecular drugs"

PSI

Biomedical activities in a nutshell

Unique expertise in biology and medicine

- structural analysis of critical cellular systems (signal transduction, microtubule system)
- structural analysis of protein dynamics
- development of radio-nuclide based small molecules and biologicals for diagnosis and therapy
- World leading expertise in proton therapy
- Establishing multi-scale imaging technologies to address biological questions

requires

Collaborations

ETHZ, EPFL, Swiss universities and hospitals, International partners (e.g. MRC-LMB Cambridge, Stanford University, Humboldt University, Kyoto University and many others)

Translation

Bench to bedside program, structure based drug discovery, industry collaborations, Spin-Off activities

Novel methods and technologies

enables

Electron diffraction, single molecule electron imaging, sample delivery, quantum mechanics-based analysis.

Additional expertise and infrastructure

Electron & light microscopy, GMP-facilities, cell & molecular biology, advanced computation, radiobiology

35

PSI

Michel Steinmetz (PSI/Uni Basel)

Center of Radiopharmaceutical Sciences (CRS)

Jörg Standfuss (PSI/UZH)

Roger Schibli (PSI/ETHZ)