

Production and Qualification of the Mu3e Vertex Detector

Thomas Christian Senger

On behalf of the Mu3e collaboration

Probing the standard model with Mu3e

- Mu3e is a high-precision experiment at Paul Scherrer Institut (PSI) in Switzerland
- Search for the Charged LFV decay $\mu \rightarrow eee$
 - Highly suppressed in the SM BR($< 10^{-54}$)
 - Via neutrino mixing
 - Best current upper limit $\mu \rightarrow eee \approx 10^{-12}$ @90%C.L. from <u>SINDRUM</u> in 1988

Standard model decay via neutrino mixing

• Goal of Mu3e

- Improve limit by 3 to 4 orders of magnitude
- BR($\mu \to eee \approx 10^{-15}$) in phase I (2025+2026)
- BR($\mu \rightarrow eee \approx 10^{-16}$) in phase II (2029+)

Experimental challenges

- Low momentum particles
 - Muons decay at rest
 - → Electron/Positron momenta < 53MeV/c
- Momentum resolution limited by multiple Coulomb scattering
- Accidental background in signal region must be minimized
- → Low material budget
- \rightarrow High granularity and fast processing
- → Excellent momentum resolution
- → Good timing (order of 100 ps) and vertex resolution (\approx 0.5 mm)

The Mu3e detector

- Hollow double cone stopping target
- Homogeneous solenoidal magnetic field
- 4 layers of pixel sensors
 - Inner two layers for vertexing
 - Pixel recurl stations for optimal momentum resolution and acceptance
- Scintillating fibres and tiles for precise timing measurements
- High rates 10⁸ muon decays per second)
- Expected data rate of up to 100GBit/s

Mu3e Vertex Detector

- Two layers of 50µm thin Mupix 11 pixel sensors
 - High-Voltage Monolithic Active Pixel Sensor (HV-MAPS)
 - Detection and Readout combined in one chip
 - Fully digital 1.25Gbit/s LVDS output
 - 99% efficiency with less than 20ns time resolution
- Mechanical support
 - Aluminized Kapton foils HDI
 - Sensors glued on foils + spTAB for electrical connection
- DAQ to sensor connection via micro-twisted pair cables and other flexes produced with standard processes
- Cooled by gaseous helium

Construction of the Vertex Detector

Single Chip QC

Ladder Production

QC of Ladders and

Services

Module assembly

Manual Single Chip QC

- Press down mechanism with contact needles
- Single chip QC consisting of 8 electrical tests
 - Basic electrical tests (IV, on chip voltage regulation, power consumption)
 - LVDS link stability
 - Noise scan
- QC takes 30min per chip
- Based on a grading scheme
- Current chip yield of 50-60 % after single chip QC

Manual Single Chip QC

- Press down mechanism with contact needles
- Single chip QC consisting of 8 electrical tests
 - Basic electrical tests (IV, on chip voltage regulation, power consumption)
 - LVDS link stability
 - Noise scan
- QC takes 30min per chip
- Based on a grading scheme
- Current chip yield of 50-60 % after single chip QC

Ladder Production

Manual chip placement

Distribution of the glue on the Mupix sensors

spTAB connections from HDI to the MuPix chips

µTP cables

- Need to use µTP cables due to space limitations
 - Successfully used by CMS pixel detector, at a lower a data readout
- Measured significant variation in impedance, increased signal loss, and differential pair distances compared to spool used by CMS
 - Signal loss up to $\approx 70\%$ at 1.25Gbit/s
- QC for µTP cable
 - Measurement of insertion loss, differential impedance and cross talk

- Need to use µTP cables due to space limitations
 - Successfully used by CMS pixel detector, at a lower a data readout
- Measured significant variation in impedance, increased signal loss, and differential pair distances compared to spool used by CMS
 - Signal loss up to $\approx 70\%$ at 1.25Gbit/s
- QC for µTP cable
 - Measurement of insertion loss, differential impedance and cross talk

Ladder QC

- Ladder placed a 3D printed box
 - · Cooled with two fans
 - Shielded with aluminum foil
- Ladder is connected via µTP to the FPGA
 - · All connections placed as in the final detector
 - Only DC-DC-converter and HV boxes are replaced with comericial power supplies (Hamegs + Keithleys)
 - Temperature readout through on chip temperature diode
- · Similar QC test procedure as for the single chip
 - Additional signal transmission test
 - Final source scan with applied noise masking at a low threshold
- Takes ~6h per ladder
- Goal is to find 18 good working ladders + spares

Signal transmission test

- Challenge of errorfree links on a ladder
 - 8b10b encoding & disparity errors
 - Crucial for a precision experiment
- Different causes compared to single chip QC
 - Light + Heat \rightarrow high leakage current \rightarrow noise
 - Connections of various detector components
 - Different voltage drops over a ladder
 - No specific ladder DAC optimization
 - High signal loss due to transmission through µTP cables
 - only short connections used with single chips

Link 21	9740	0	Link 21
L R	0		L 🖲 R 🖲
Link 22	2591	0	Link 22
L R	0		L 🖲 R 🖲
Link 23	2791	0	Link 23
L R	0		L 🖲 R 🖲

Signal transmission test

- Chip internal peremphasis + signal amplication can recover the eye opening of transmitted chip data
- Design of additional QC test
 - µTP signal transmission studies show optimal transmission at preemphasis ~ 30% signal amplitude
- Found plateau where error free transmission is possible
 - With increase of preemphasis eye opening factor increases
 - Signal amplitude dereases
- 3 dimensional scan in "plateau region" for each chip
 - Additional scan of another DAC for the regulation of the differential current logic

Current time line

- Cosmic run with all services installed in November/December
 - Development of calibration, monitoring and data taking routines

DC-DC ready

SSW + cooling fully operational

- Tested seven wafers for production
- Ladders are currently constructed and qualified
 - Current ladder yield of <50% (preliminary)
- Module construction in the first week of October
 - Module QC (basic tests)
- Services/Cooling and DAQ are currently being installed
- Also other Detector components are installed
- Yifeng will give an overview in the next talk
- First beam data next year

Testbeam at Desy in May and PSI in October 2023

- 50µm & 70µm single chip testbeam at Desy
 - Demonstrated the capability of masking
 - Efficiency studies showed capapility to go to efficiency of 99%

- First testbeam with 2 operational ladders at PSI
 - Beam clearly visible on ladder
 - Correlation studies with 2 quad modules + scifi

