The Mu3e experiment: Status and short-term plans

Robert-Mihai Amarinei, University of Geneva, CH

NuFact 2024, Lemont, Il robert-mihai.amarinei@unige.ch

Aims:

Design From theoretical motivation to experimental design.

Construction

Update on the construction of each subdetector.

Short-term plans

Cosmic run. First physics run.

Physics of Mu3e: Lepton Flavour Violation

Charged Lepton Flavour Violation (cLFV):

- Neutrinos (*v*) oscillate...
 - Consequently, lepton flavour violated...
 - Need to adapt the Standard Model (SM) to account for this $\rightarrow \nu$ SM.
- Implications:
 - cLFV possible through higher order processes but highly supressed
 - Still, cLFV impossible at tree level in ν SM.

Physics of Mu3e: Lepton Flavour Violation

Charged Lepton Flavour Violation (cLFV):

- Neutrinos (ν) oscillate...
 - Consequently, lepton flavour violated...
 - Need to adapt the Standard Model (SM) to account for this $\rightarrow v$ SM.
- Implications:
 - cLFV possible through higher order processes but highly supressed
 - Still, cLFV impossible at tree level in ν SM.

Opens "box of Pandora" for physicists... (Mu3e @ PSI) $\mu^+ \rightarrow e^+ e^+ e^-$ (MEG @ PSI) $\mu^+ \rightarrow e^+ \gamma$. $\mu^{-} + N \rightarrow e^{-} + N$ (Mu2e @ Fermilab, COMET @ JParc) $\tau^+ \rightarrow e^+/\mu^+\gamma$ (Belle 2 @ KEK) $au^+
ightarrow \mu^+ \mu^+ \mu^-$ (LHC @ CERN)

Further infos: S. Middleton Talk

Further infos: A. El-Khadra Talk

Physics of Mu3e: $\mu^+ \rightarrow e^+e^+e^-$

Mu3e aims to look for the Charged Lepton Flavour Violation decay: $\mu^+ \rightarrow e^+e^+e^-$

- $\mu^+ \rightarrow e^+e^+e^-$... Technically allowed in the ν SM but highly supressed (O⁵⁰)
- Any sign of µ⁺ → e⁺e⁺e⁻ would imply physics Beyond the Standard Model (BSM) as decay is strongly supressed in SM.
- Possible mechanism: Supersymmetric particles etc...

Previous attempts to measure $\mu^+ \rightarrow e^+e^+e^-$

- Processes like :
 - $\mu^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} \, \gamma$,
 - $\mu^-\,N \to e^-\,N$,
 - $\mu^+ \rightarrow e^+ e^- e^+$
 - \rightarrow not observed!
- Best limits on LFV come from PSI muon experiments
 - $\mu^+ \rightarrow e^+ e^- e^+$ BR < 1 x 10⁻¹² (SINDRUM, 1988)
 - $\mu^- Au \rightarrow e^- Au$
 - BR < 7 x 10⁻¹³ (SINDRUM II, 2006)
 - $\mu^+ \rightarrow e^+ \gamma$ BR < 3.1 x 10⁻¹³ (MEG II, 2024)

Mu3e is going to use world's most intense muon beam to look for $\mu^+ \rightarrow e^+e^+e^-$

Physics goals of Mu3e:

- Phase 1 goal: $B(\mu \rightarrow eee \sim 10^{-15})$
- Phase 2 goal: $B(\mu \rightarrow eee < 10^{-16})$

need more than 10¹⁷ muon decays...

Only one option:

- World's highest intensity continuous muon beam (π E5 @ PSI)
 - Phase 1: ~10⁸ muon decays/sec
 - Phase 2: >10⁹ muon decays /sec
- Muons stopped on hollow target where they decay.

Signal and Backgrounds

- Common vertex
- $\sum \mathbf{p}_i = 0$
- $\sum E_i = m_\mu$
- $\sum t_{eee} = 0$ (in time)

The signal of interest

- Common vertex
- ∑p_i≠0
- $\sum E_i < m_\mu$
- $\sum t_{eee} = 0$ (in time)

Need good momentum resolution

- No common vertex
- ∑p_i≠ 0
- $\sum E_i \neq m_\mu$
- $\overline{\sum} t_{eee} \neq 0$ (out of time)

Need very good timing, vertex and momentum resolution

Mu3e – General Detector Requirements

General technical requirements:

- Many muon decays needed (Phase 1+2): 10¹⁷
- Timing resolution: Better than 500 ps
- Momentum resolution: < 0.5 MeV/c
- Spatial resolution: $\sim \mu m$
- Fast data acquisition: 10⁸ Hz rates
- Low material budget

~ 1.5 m length

~0.15 m diameter

Mu3e – Particle Detection Principle

Particle's direction through detector:

- Muons decay at rest in target
- Electrons and positrons start propagating in magnetic field
- Charged particles recurl in 1 T magnetic field → <u>e⁺/e⁻ detected a</u> second time.

Mu3e – Subdetector roles - Pixel

Detectors:

- **Pixel** detectors for tracking: vertex, outer-central, and recurl
- Thin Scintillating Fibers for timing: central
- Scintillating Tiles for timing: recurl

Silicon pixel detector HV-MAPS

Pixel tracker – High Voltage Monolitic Active Pixel Sensors (HV-MAPS) - MuPix

- Hits matched between two inner layers and two outer layers
- Cooled with helium gas
- Acceptance increased with recurl stations
- 50 µm thickness (vertex), 70 µm (recurl)
- Active area 20 x 20 mm² (23 mm including readout area)
- Operated with up to 70 V

Pixel tracker - Status

11 year R&D period over...

- Inner pixels installation in progress
- Helium gas cooling installed
- ~23 μm spatial resolution, efficiency 99%*, < 20 ns time resolution

Two layer vertex detector to be installed by November

50 μ m thick silicon wafer

Mu3e – Subdetector roles - SciFi

Detectors:

- Pixel detectors for tracking: vertex, outer, and recurl
- Thin Scintillating Fibers (SciFi) for timing: central
- Scintillating Tiles for timing: recurl

Timing at centre: Scintillating Fibre (SciFi) detector

- SciFi basics:
 - 3 layers of 250 μm staggered fibres
 - 12 long fibre ribbons covering 4 π
 - 1 ribbon = 720 µm thick, 0.2 % radiation length
 - 300 ps time resolution
 - Liquid cooling (SilOil, -20°) through the Cooling Ring (CR).

Particles produce photons which propagate towards the ends

- Each ribbon has SiPM arrays at its ends
- 256 channels per ribbon, 3072 for SciFi.

15

Timing at centre: Scintillating Fibre (SciFi) detector

Performance of the SciFi detector

NOL (1.1 ns) – shorter decay time than SCSF-78 (2.8 ns)
 Not a great impact on the time resolution
 → Photon number is the dominant contribution.

3 layer SCSF-78 scintillator radiation length $X/X_0 \sim 0.2\%$ \rightarrow Final design

Defining quality control methods for mass production

Beam test results – SciFi qualification with MuTRiG ASICs

Beam test results – SciFi qualification with MuTRiG ASICs

Time difference between coincidences at two ribbons (ns)

Excellent Mean Time resolution maintained for two ribbon coincidences: ~ 381 ps.

Preliminary plot: Correlation between final version of both pixel detectors and SciFi.

SciFi detector - Status

- 6 modules produced
- To be installed by November
- Liquid cooling system installed

cc Niklaus Berger – Flickr Mu3e

Mu3e – Subdetector roles - SciTile

Detectors:

- Pixel detectors for tracking: vertex, outer, and recurl
- Thin Scintillating Fibers for timing: central
- Scintillating Tiles (SciTi) for timing: recurl

Mu3e – Subdetector roles - SciTile

No tight material limitation on Detector volume → "Thick" detector Highly segmented in ~6k tiles Very compact design

•Tiles from fast Ej-228 plastic scintillator (6 x 6 x 5 mm³)
•Individually wrapped in ESR foil - Minimize crosstalk
•Coupled to Hamamatsu SiPMs read out by Mutrig ASIC (S13360-3050VE @ -10°C, Silicon oil cooling)
•Efficiency > 99%, single-channel time resolution ~ 40 ps
•Performance validated in Demonstrator Modules

•First final modules produced

Mu3e – Plans for 2024 and further

Achievements so far:

- DAQ operational with different detector types
- Cooling for detectors
- Pixel, SciFi, SciTile \rightarrow First modules installed

Aims for rest of the year:

- Cosmic run
- Complete experimental chain
 - Detector installation
 - Data taking

Thank you, Argonne!

Bibliography:

[1] Mu3e Letter of Intent (2012), <u>https://www.psi.ch/sites/default/files/import/mu3e/DocumentsEN/LOI_Mu3e_PSI.p</u> [2] Mu3e Technical Design Report (2020), <u>https://arxiv.org/abs/2009.11690</u>