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1. Introduction 
Small Angle Neutron Scattering (SANS) is a technique that allows characterizing structures or 
objects on the nanometer scale, typically in the range between 1 nm and 150 nm. The information 
one can extract from SANS is primarily the average size, size distribution and spatial correlation 
of nanoscale structures, as well as shape and internal structure of particles (e.g. core-shell 
structure). Further, the scattering intensity on an absolute scale contains the product of scattering 
contrast of the investigated structures in the surrounding medium, and number or volume density. 
If one of both quantities is known, the other one can be derived in addition to the information 
mentioned before. All in all, SANS is a valuable technique, widely used in many fields, to 
characterize particles (in solution or in bulk), clusters, (macro-)molecules, voids and precipitates 
in the nanometer size range. Further, in-situ measurements allow following the temporal 
development and dynamics of such structures, on a time scale ranging from microseconds 
(stroboscopic) to hours. 

Besides the nuclear interaction, due to their magnetic moment neutrons undergo a magnetic 
interaction with matter, approximately equally strong (in terms of order of magnitude) as the 
nuclear interaction. This property distinguishes neutrons markedly from x-rays where magnetic 
interaction is very weak and difficult to access experimentally. With this dual interaction of 
neutrons with matter they offer the opportunity to study both, compositional and magnetic 
structures and correlations. Thus, a strong area of application of neutrons traditionally was and 
still is the area of magnetism in solid state physics and condensed matter research. SANS in 
particular, probing structures on the nanometer scale, finds applications in micromagnetism, to 
magnetic clusters embedded in a solid nonmagnetic matrix, magnetic clusters suspended in fluids 
(e.g. ferrofluids), magnetism in nanostructured materials, vortex lattices in superconductors and 
many others. Further, by using a polarized neutron beam, very specific information on the 
magnetic structure or alignment of nanoparticles can be obtained, as well as on their response to 
an external magnetic field. In general, neutrons are the only probe which give direct access to 
magnetic moments and magnetic interactions and alignment down to the atomic scale, and the 
probing does not by itself impose a magnetic perturbance, as e.g. by an external magnetic field. 
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1.1 Neutron beams 

Neutron beams for materials science and condensed matter research are produced either by 
nuclear reactors, with the most prominent representative being the ILL, Grenoble (F), or by 
neutron spallation sources, like ISIS, Abington (UK), the latter operating in pulsed mode. The 
neutron energy spectra provided at these sources, generated by specially tailored moderation 
systems, are primarily in the range of thermal energies with a Maxwellian distribution around 320 
K (thermal neutrons) or 30 to 40 K (cold neutrons). The corresponding wavelengths of the 
neutron beams peak around 0.13 nm (thermal) or 0.3 to 0.4 nm (cold), both with a considerable 
tail towards higher wavelengths, in the case of cold neutrons reaching far beyond 1 nm. Thus, the 
wavelength range of neutron beams overlaps well with that of x-ray beams, being the basis of the 
similarities and complementarities of both types of probing beams for structural analysis. The 
difference lies in the type of response or interaction with materials: the x-rays are scattered by the 
electron clouds, resulting in a linear dependence of the scattering strength (scattering amplitude) 
on the atomic number. In contrast, neutrons are scattered at the atomic nuclei, and the nuclear 
scattering lengths vary more or less unsystematically for the different elements, and also 
distinguish different isotopes of one element. Further, as outlined before, neutrons undergo 
magnetic interaction with matter, which makes them a valuable probe for magnetic structures. 

1.2 Atomic scattering amplitudes 

The scattering amplitudes for nuclear scattering are widely tabulated, for the elements in natural 
isotopic abundance as well as for the individual isotopes [1]. The atomic scattering amplitudes for 
magnetic scattering will depend upon the atomic magnetic moment which includes implicitly the 
magnetic form factor descriptive of the spatial origin of the atomic magnetic moment. Values for 
the most prominent magnetic elements, like Fe, Co, Ni, Gd, can be found in [2]. For more 
complex systems, like alloys containing magnetic elements, the individual atomic magnetic 
moments may depend on the local magnetic surrounding and would have to be determined 
experimentally for each case. Examples for the Fe-Cr-, Ni-Fe- and Co-Cr-series can be found in 
[3]. 

1.3 The classical SANS instrument 

The classical concept of a SANS instrument at a continuous neutron source was first realised in 
the early 1970’s at the Jülich Research Centre, Germany, the ILL Grenoble, France [4] and the 
HFIR reactor in Oak Ridge, USA [5]. Modern instruments of this type, like the D22 instrument at 
the ILL, the SANS at HMI, Berlin, Germany, or the SINQ-SANS at PSI, Switzerland [6], still 
follow the same principle concept, although using state-of-the-art components and advanced 
technical concepts. For measurements of magnetic structures polarisation and spin-flipping of the 
incident beam is a viable option at HMI [7], GKSS, Geesthacht (D) [8], NIST, Gaithersburg 
(USA) LLB, Saclay (F) [9] and PSI, Villigen (CH). 
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The basic layout of a classical SANS instrument is illustrated in Figure 1. The preferential 
position of the instrument is at the end of a neutron guide supplying a spectrum of cold neutrons. 
The neutron energy, or wavelength, respectively, is selected by a mechanical velocity selector 
with a resolution of typically 10% FWHM. Double pin-hole collimation tailors the beam for the 
necessary angular resolution, and a two-dimensional position sensitive detector registers the 
neutrons which are scattered to small angles around the incoming beam. The favored instrument is 
typically 40 m in length, 20 m for the collimation and 20 m for the secondary flight path with a 
flexible distance between sample position and detector. The detector sizes nowadays reach 96x96 
cm2 with about 16000 pixels of 7.5x7.5 mm2 resolution. Electromagnets, cryomagnets, furnaces 
and cryostats, alone or in combination, belong generally to the standard equipment for sample 
environments.  

At a pulsed source, like ISIS (UK) or IPNS (USA) [10], the concept of a SANS instrument is 
different, making use of a time-of-flight selection of the ‘white’ incoming beam. Besides that, the 
operational concept is very similar to instruments at continuous sources. 

In the experiment the scattered intensity is registered as a function of the radial distance from the 
beam center, i.e. as a function of the scattering angle 2θ , or, more general, as function of the 
scattering vector Q or of its modulus Q. The latter is related to 2θ  via Q = (4π/λ) sin θ, with λ, 
the neutron wavelength. By appropriate calibration one obtains the intensity in absolute units of 
the differential scattering cross section (dσ/dΩ) (Q). When the scattering is isotropic around the 
central beam, it may be averaged azimuthally for each value of Q (so-called "radial average"). If 
the scattering is non-isotropic, as often observed in the case of magnetic scattering, one has to 
consider the scattering in different azimuthal directions by sectional averaging. 

For characterizing magnetic structures it is mostly necessary, or at least helpful, to analyze the 
response of the scattering to an externally applied magnetic field. In the examples treated in the 
present chapter such an external field, when applied, is assumed to be homogeneous, directing 
horizontally and perpendicular to the incident neutron beam. Other configurations are possible 
and can be adapted if appropriate, for instance, a beam-parallel field for investigating vortex 
lattices in superconductors. Such examples are not considered here, although the same theoretical 
principles as outlined in section 2 apply. 
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Figure 1: Schematic layout of a classical SANS facility at a continuous neutron source. 
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2. Neutron scattering 
This section gives a general theoretical introduction to neutron scattering focusing to magnetic 
scattering and small angle scattering, with the objective to introduce the established notations and 
present and explain the most important basic formulae needed to evaluate a scattering experiment 
characterizing magnetic structures. For further reading and more details we refer to [11-20]. 

In a scattering experiment, the primary goal is a detailed analysis of the measured scattering 
pattern in relation to the properties of the incoming neutron beam. Monochromator and collimator 
define the energy (wavelength) and divergence of the incoming neutrons. Those interact with a 
sample and thereby undergo a momentum transfer Q, with the scattering vector Q=k0-k, and k0, 
k being the wave vectors of the incoming and scattered neutrons, respectively. This process in 
principle can be elastic or inelastic. For small angle scattering inelastic scattering events are of 
minor importance and will be neglected in the present treatise.  

2.1 Scattering potential 

The scattering of a neutron, interacting through a scalar potential V(r) with material, can be 
described by the asymptotic solution of the Schrödinger equation, see e.g. [11,12], which results 
in the wave function 
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where f(θ,ϕ) in first Born approximation is given by 
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For low-energy and short-ranging (i.e. nuclear) interactions the potential V(r) can well be 
approximated by the Fermi pseudo-potential [13] 
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thus that f(θ,ϕ) reduces to 

 ( ) jbf −=ϕθ ,  (4)  

bj being the so-called atomic scattering length of atom j. 

In this approximation, the differential scattering cross section per atom can be written as [14] 
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where N is the number of atoms exposed to the beam. 

2.2 Magnetic scattering 

In the case of magnetic moments in the sample, the neutron undergoes a magnetic interaction in 
addition to the nuclear interaction. The corresponding interaction potential is given by [15]  

 ( ) ( )rBr ⋅−= NV  with 
N

N m
e

2


γ=  (6)  

where µµµµN is the magnetic dipole moment of the neutron, σσσσ the Pauli spin operator, γ = -1.913 the 
gyromagnetic ratio and B(r) the magnetic field induced by an atom at the position of the neutron. 
The latter has two components, one induced by the magnetic dipole moment µµµµS of the electrons, 
denoted BS(r), and one by their orbital moment µµµµL, denoted BL(r). The (weak) magnetic 
interaction V(r) = µµµµN (BS(r) + BL(r)) can as well be treated in first Born approximation, resulting 
in the magnetic scattering amplitude, in analogy to the nuclear scattering amplitude, given by the 
Fourier transform of the magnetic interaction potential 

 ( ) ( )( ) +⋅−= rBrBQr
LSN

N
M erdmb ι

π
3

22 
. (7)  

An additional static magnetic field H(r) at the point of local magnetization M(r) (originating 
from BS(r) + BL(r)) induces a total local magnetic induction of 

 ( ))()()( 0 rMrHrB += µ  (8) 

and the Fourier transform of )(rB  yields [cf. 16-18] 

 ( ) ( )[ ] ( ) ( ) ( )),(sin0020 MQQMQMQQMQQB ∠==
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 (9)  

where ( ) ( ) ( ) ⋅= rMrQQM ird exp3 , with ( )rM  given in units of Am.  

( ) ( ) ( ) ( )2/ sin ( , )Q⊥ = × × = ∠  M Q Q M Q Q M Q Q M  is the magnetization 

component perpendicular to the scattering vector Q. The magnetic scattering length then is [16] 

 ( ) ( )QMQM ⊥⊥ ⋅=⋅= 0
0

2
µ

π
µγ

MM Deb


. (10)  



 

 6 

For the differential scattering cross section one finally obtains 
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d
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2.3 Polarized neutron scattering 

In the presence of a preferred direction, for example induced by an external magnetic field, the 
magnetic scattering depends on the spin state σσσσ  of the neutrons. Let the z-axis be the preferred 
direction, and let (+) and (–) denote the neutron spin polarizations parallel and antiparallel to the 
z-axis, then the scattering is described by four scattering processes: two processes where the 
incident states (+) and (–) remain unchanged (++ and – –), the so-called ‘non-spin-flip’ processes, 
and two processes where the spin is flipped (+– and –+), the ‘spin-flip’ processes. Keeping in 
mind that the nuclear scattering does not flip the neutron spin, the four related scattering lengths 
are [19] 

 zMN MDbb ⊥±± = 0µ  (12a)  

 ( )xyM iMMDb ⊥⊥± ±−= 0µ  (12b)  

It is evident that non-spin-flip scattering only contains magnetic contributions from effective 
magnetization components along the z-axis. If the scattering vector Q  is parallel to the z-axis, 

zM ⊥  is zero. On the other hand, if spin-flip scattering is present, it is exclusively due to effective 
magnetic components deviating from the z-axis, the axis of magnetic polarization. 

For an unpolarized neutron beam (which may be taken composed of 50% (+) and 50% (–) 
polarization) the square of the modulus of the scattering length is 

 ( ) 2
0

2222222

2
1

⊥+−−+−−++ +=+++= MµMN Dbbbbbb  (13)  

The differential cross section of the unpolarized neutron beam can therefore be described by the 
sum of the nuclear and the magnetic cross section, without any cross terms. 

2.4 Small angle neutron scattering  

2.4.1 Scattering by individual magnetic particles 
Small angle scattering does not resolve individual atoms, but structures of sizes in the nanometer 
range. Therefore the discrete atomic scattering lengths bj can be replaced by a scattering length 
density ρ(r) of the sample. The differential scattering cross-section (c.f. Eq. (5)) is than given by 
the Fourier transform of ρ(r): 
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with V being the sample volume. Assuming that this volume contains N particles embedded in a 
surrounding matrix of constant scattering cross section ρmatrix , we define the scattering length 
distribution inside each particle by ρP,j(r)=Δηj(r)+ρmatrix . Than, with Rj being the vector pointing 
to the centre of the particle j, the related scattering cross section can be written as 
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For particles of constant scattering length density, the scattering amplitude for nuclear scattering 
can be expressed as 

 ( ) ( )QQ fVbF PNN Δ= . (16)  

where the constant jηΔ  was replaced by NbΔ , the contrast for nuclear scattering between the 

particles and the surrounding matrix. VP is the particle volume. ( )Qf denotes the so-called 
particle formfactor and can be calculated analytically for many simple particle shapes, as 
tabulated in [20]. For spherical particles of radius R, it is the well-known expression, dating back 
to Lord Rayleigh [21]  

 ( ) 3)(
)cos()sin(3

QR
QRQRQRQRf −

= . (17)  

We now assume the same particles being of homogenous magnetisation MP, embedded in a 
homogenously magnetized surrounding MM. The magnetic scattering of these particles then 
depends on the magnetic contrast vector ΔM= MP-MM relative to the scattering vector Q:  

 
( )

2Q
QMQM ×Δ×

=⊥  (18) 

To calculate the magnetic scattering amplitude one has to consider the spin state before and after 
the scattering process according to Eqs. (12a,b)  

 ( ) ( )QQ fVbF P±±±± Δ=  ,       ( ) ( )QQ fVbF P ±± Δ=  (19) 

2.4.2 Scattering by groups of particles 
The scattering from an accumulation of many particles is obtained by summing up the scattering 
amplitudes of all particles weighted by a phase shift at each particle position. The general 
expression for the scattering cross section then is given by  
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 (j standing for ±± , ± , or N and M in the case of unpolarized neutrons, respectively). The 
right-hand-side of Eq. (20) consist of two terms: The first one depends only on the particle 
structure and corresponds to the independent scattering of N particles, while the second one 
considers their spatial distribution and reflects the interparticle interference described by )(QS . 

The 
 
indicates an average over all possible configurations and sizes of the particles.  

As postulated by Eq. (13), in the case of an unpolarized incident neutron beam the scattering of 
both contributions, nuclear and magnetic, is linearly superposed 
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 (21)  

In both contributions two averages are involved: the average of the squared scattering function 
and the square of the average scattering function. For monodisperse, radially symmetric particles, 
for nuclear scattering the averages ( ) ( ) 2QFQF NN ≡2  are identical, so that  

 ( ) ( ) ( )QSQFQ
d

d
N

N 2=
Ω

σ  (22)  

To evaluate the averages for the magnetic scattering cross-section we have to consider the angular 
orientations of ΔM, parameterized by the angular alignment probability ( )MMp Θϕ , of ΔM. 

Following up Eq. (11), the averages over all ( )MMp Θϕ ,  are than given by the general 
expressions 

 ( ) ( ) ( )[ ] MMMMMPM ddDpRQfVQF ΘΘ=  ⊥ ϕµϕ
2

0
222 )(,, QM          (23a)  

 ( ) ( ) ( )[ ]20
2 )(,, MMMPMMM ddDRQfVpQF ΘΘ= ⊥ ϕµϕ QM          (23b)  

For two extremes, i.e. a demagnetised sample (ΔM at random orientation) and a sample in 
magnetic saturation (ΔM all parallel), the averages can readily be performed:  

In the case of random orientation of ΔM the square of the average formfactor ( ) 2QMF  is zero 
and  

 ( ) ( ) ( ) ( )QQQ 222
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which is independent of interparticle interference effects. 
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In the case of magnetic saturation, the averages ( ) ( ) 2QQ MM FF ≡2  are identical, as for nuclear 

scattering, and we obtain  

 ( ) ( ) ( ) ( )ΨΔ=
Ω

2222
0 sinQQ fVMD

d
d

PM
M µ

σ  (25)  

where ),( MQ Δ∠=Ψ , the angle between the direction of the magnetic contrast MΔ , and the 
scattering vector Q, in practice the azimuthal angle on the two-dimensional SANS detector. 

Averaging with regard to the azimuthal angle results in  

 ( ) ( ) ( )QQ 222
02

1 fVMD
d

d
PM

M Δ=
Ω

µ
σ  (26)  

which differs from Eq (24) only by the prefactor 1/2 instead of 2/3.  

If the particles are not monodisperse in size, and/or not equal in shape, each size/shape class has 
to be considered individually. When interparticle interference can be neglected, the scattering 
contributions of the different classes are incoherently superposed. In the particular case of a finite 
size distribution of equally shaped particles, neglecting interparticle interference, the scattering 
cross section can be calculated as the integral over all individual contributions from the size 
interval between R and R + dR. For the nuclear scattering, this results in 

 ( ) ( ) ( ) ( )dRRNRVfb
d

d
P

R
N

N 222 Δ=
Ω

QQσ  (27)  

with N(R) VP(R)  dR being the incremental volume fraction with VP(R), the particle volume in the 
related size interval. 

For the magnetic scattering of particles of finite size distribution and in magnetic saturation, the 
scattering cross section is given in analogy to Eq. (27) by 

 ( ) ( ) ( ) ( ) ( )dRRNRVfMD
d

d
P

R
M

M 2222
0 sin ΨΔ=

Ω
QQ µ

σ  (28)  

2.4.3 SANS from superparamagnetic particles 
A further example where the average over all orientations of the magnetic contrast can be treated 
analytically is the case of superparamagnetic particles. Since the same model, in adapted versions, 
holds to explain many of the scattering patterns in the successional examples we will discuss this 
case here in some more detail.  
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The superparamagnetic state is characterized as an ensemble of non-interacting magnetic 
particles, the magnetic orientation of each particle being governed by the balance between the 
thermal energy kTEth =  and the potential energy of a magnetic particle imposed by an external 
magnetic field. The potential energy of a homogenously magnetized, single domain particle of 
magnetic moment PPP VM = in a magnetic field H  is PPVE MH ⋅−= 0pot µ . Since the 
relaxation time for reaching the thermodynamic equilibrium is short compared to the SANS 
measuring time, the scattering cross-section of an ensemble of superparamagnetic particles can be 
calculated as thermodynamic equilibrium state following the Langevin statistics, as outlined in the 
following.  

To calculate the averages according to Eqs. (23a,b), the orientation probability of the magnetic 
contrast MΔ and its magnitude needs to be known. In the case of a classical superparamagnet, 
where magnetic single domain particles are embedded in a non-magnetic matrix, the magnetic 
contrast is identical to the magnetisation of the particle PMM =Δ , and the orientation 
distribution of the magnetic moments are following the Boltzmann statistics. When a magnetic 
field H is applied, it forces the magnetic moments PPP VM =  of the particle (see Figure 2a) to 
rotate towards the direction of H. This tendency is opposed to disturbances by the thermal 
excitation. The probability p for a given orientation is then given by the Boltzmann factor 

 ( )kTVpp PP /exp 00 MH ⋅= µ . (29)  

This model of a classical superparamagnet can be extended by allowing for a magnetic matrix 
surrounding the magnetic particle. For our treatment we assume a homogeneously magnetized 
matrix, i.e. a matrix in which the magnetisation is constant in magnitude and always parallel to the 
applied magnetic field H, as illustrated in Figure 2b. The magnetic property of the matrix enters 
the scattering problem at two points. Firstly, the scattering contrast is now defined as the vector 
difference between the particle and the matrix MP MMM −=Δ , and secondly, the magnetic 
matrix influences the potential energy of the particle and therefore the magnetic orientation 
distribution. The influence on the orientation distribution depends strongly on the magnetic 
coupling between matrix and particle. If we assume that there is only magneto-static coupling, and 
no exchange coupling between particle and matrix, the magnetization of the matrix simply 
amplifies the external magnetic field such that the Boltzmann factor has to be modified 
accordingly, and the orientation probability is given as 

 ( )( )kTVpp PPM /exp 00 MMH ⋅+= µ . (30)  

(a) 

 

MP=ΔM M P

MM = 0 

H 
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(b) 
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Figure 2: Schematic illustration of a superparamagnetic particle in an external external field H, 
embedded in a nonmagnetic matrix (a) or in a homogeneous magnetic matrix with the 
magnetization direction aligned parallel to H (b). The corresponding magnetic scattering contrast 
vectors MP MMM −=Δ are illustrated in the shaded boxes. 

Describing the orientation distribution of the magnetization of the particle MP by the Boltzmann 

factor as in Eq. (30), the averages of the formfactors ( )QFj
2  and ( ) 2

QFj can be calculated. 

For this purpose it is convenient to define the scattering vector Q and the magnetization of the 
particle MP in polar coordinates as illustrated in Figure 3. Here, the ex-direction is assumed to be 
the direction of the incident neutron beam. The applied magnetic field H (and hence the 
magnetization of the matrix MM ) are assumed to be parallel to ez. The 2-dimensional neutron 
detector is placed in the eyez-plane. Then the relevant vectors are defined as 
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Figure 3: Definition of the scattering vector Q and the particle magnetization MP in polar 
coordinates. 

The averages of the formfactors for the different spin states (cf. Eq. (19)) can be written as 
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The Boltzmann factor p is normalized to unity by choosing the normalization factor 

[ ] 12
0 /)sinh()4(

−
= ααπp with the α–parameter representing the ratio between magnetic 

(potential) and thermal energy: 

 kTVMMH PPM /)(0 += µα  (32)  

The averages can be calculated analytically: Combining Eqs. 12, 18, 19, 20 and 31 and 
introducing the classical Langevin-function ααα /1coth)( −=L , after some 
calculations one obtains the scattering cross-section of a superparamagnetic particle 
system in a homogeneous magnetic matrix described by the expressions 
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)()(~
0 QQ fVMDF PPMM µ=  and )()( QQ fVbF PNN Δ=  are the magnetic and nuclear 

scattering amplitudes, respectively. γ  is defined as PM MM /=γ , and ε  is the angle between 

Q  and ze , which in practice is the same as Ψ  ( Ψ≈Ψ= coscossincos δε  for 2/πδ ≈ ).  

If all formfactors )(Qf  only depend on the modulus of the scattering vector, Q, the scattering 
cross-sections can be written in the form  
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whereby for unpolarized neutrons the last term vanishes, i.e. ( ) 0≡QC . Eqs. (33) describe the 
transition of the magnetic scattering contribution from an anisotropic (ψ-dependent) to an 
istotropic (ψ-independent) scattering behavior when increasing the disorder of the magnetic 
moments. From Eqs. (33) one obtains immediately the limiting cases of saturation and complete 
disorder: 

For large values of α, i.e. high magnetic fields and/or low temperatures such that all magnetic 
moments are uniformly aligned, we obtain 0lim )( =∞→ α

α
α

L  and 1)(lim =∞→ αα L , and the 

isotropic magnetic scattering term ( ) ( ) αα /2~2 LQFM  vanishes. Hence, the magnetic scattering gets 
fully anisotropic, only the nuclear scattering remains isotropic. For unpolarized neutrons the two 
remaining terms in Eq. (34), A(Q) and B(Q), then are given by the expressions 

 

)()()(lim

)()()(lim

2222
0

2

2

QSQfVMDQB

QSQFQA

PMunp

Nunp

Δ=

=

∞→

∞→

µα

α

 (35)  

For small values of α, i.e. high temperatures and/or low magnetic fields, we get the other limiting 
case where 3/1lim )(

0 =→ α
α

α
L  and 0)(lim 0 =→ αα L  and hence, the magnetic scattering 

contributes by 2/3 of its magnitude to the isotropic scattering: 

 )(~
3
2)()()(lim 22

0 QFQSQFQA MNunp +=→α . (36)  

For unpolarized neutrons and for random orientation of the magnetic moments of the particles the 
unisotropic term converges towards 

 )()()()(~)(lim 2222
0

222
0 QSQfVMDQSQFQB PMMMunp µγα ==→  (37)  

This contribution only vanishes for random magnetic orientation of particles in a nonmagnetic (or 
paramagnetic) matrix ( 00 == γMM ), because only in that case the average magnetic contrast 
is zero, i.e. <ΔM>=0. 

The scattering behavior of a system of superparamagnetic particles in many aspects is very typical 
for other systems of micromagnetism, as treated by the examples in Section 3, and can be a 
valuable basis for the interpretation of the observed scattering. Therefore, in preparation of 
Section 3 Figure 4 shows simulated examples of magnetic scattering patterns from 
superparamagnetic particles on a two-dimensional SANS detector. The simulations were made on 
the basis of Eq. (33c), i.e. for the case of an unpolarized neutron beam. For the simulations 
nuclear scattering has been neglected. The latter, if present, would be isotropic and linearly 
superposed. Figure 4 distinguishes examples for magnetic particles in a nonmagnetic matrix, cf. 
Figure 2a (γ=0), and in a magnetic matrix, cf. Figure 2b, for the latter assuming in magnitude the 
same magnetization as for the particles (γ=1). Varying the Langevin parameter α from 0 to ∞ 
simulates the transition from fully random magnetic orientation of the particles to a strong field-
parallel alignment. 
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For γ=0 (nonmagnetic matrix) the scattering patterns show the classical transition from being 
isotropic for α=0 to passing a vertical (field-perpendicular) elliptical distortion for intermediate α 
(note that the hypothetical magnetic field is directing horizontally) and finally, for large α, 
showing the sin2ψ behavior expected from Eq. (25). On the other hand, in a magnetic matrix 
(γ=1) the patterns are quite different: Here, the resulting net magnetic contrast MP MMM −=Δ , 
initially governed by the field-parallel matrix, develops a residual field-perpendicular component 
(cf. shaded inset in Figure 2b). Consequently, the scattering patterns show a vertical sin2ψ 
behavior for small α, passing nearly isotropic patterns for intermediate α, and finally converting 
into a horizontal (field-parallel) elliptical elongation. When approaching saturation (α → ∞) the 
magnetic contrast reduces to zero in this case and the magnetic scattering vanishes. 

     

α=0, γ=0 α=1, γ=0 α=2, γ=0 α=5, γ=0 α>>10, γ=0 

     

α=0, γ=1 α=1, γ=0 α=2, γ=1 α=5, γ=1 α>>10, γ=1 

Figure 4: Simulated 2-dimensional magnetic SANS patterns of superparamagnetic particles in a 
nonmagnetic matrix (γ=0) and in a magnetic matrix of the same magnetic moment in magnitude as 
that of the particles (γ=1), in both cases for an unpolarized incident neutron beam. Varying the 
Langevin parameter α from 0 to ∞ simulates the transition from fully random magnetic orientation 
of the particles to a strong field-parallel alignment (the hypothetic field is directing horizontally). 
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