Scientific Highlights

.

Molten Salt Reactor research at LSM/NES

MSR research at LSM has 3 main justifications:

1. education purpose (2 PhD & 8 MSc internal students, 3 PhD & 4 other guests)

2. technology monitoring (it is the most revolutionary GIV system)

3. novel research topics (liquid phase of the fuel introduces many challenges)

Two major research objectives in NES:

1. safety: evaluate system behavior in nominal and transient conditions (tight multi‐physics coupling / H2020 SAMOFAR project)

2. sustainability: evaluate if the concept can use legacy nuclear waste as initial fuel, insure a high resource utilization (high burning)

Collective magnetism in an artificial 2D XY spin system

Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase.

ipwa

ETH Medal for outstanding MSc thesis

The characteristics of low energy electrons accelerated by a laser wakefield (Laser Wakefield Acceleration LWFA) has been studied. The work included understanding the acceleration process, setting up the experiment and measuring properties like charge, divergence and energy of the accelerated electrons. The experiment included diagnostics for the laser and the electrons. In order to make high-resolution energy distribution measurements with relative errors ∆E/E of below 10%, a tunable electron spectrometer has been designed, built and characterized. A tunable permanent magnet quadrupole triplet has been designed for stigmatic focusing in a range of 5 keV to 5 MeV.