Topological properties of materials are of fundamental as well as practical importance. Of particular interest are unconven- tional superconductors that break time-reversal symmetry, for which the superconducting state is protected topologically and vortices can host Majorana fermions with potential use in quantum computing. However, in striking contrast to the unconventional A phase of superfluid 3He where chiral symmetry was directly observed, identification of broken time- reversal symmetry of the superconducting order parameter, a key component of chiral symmetry, has presented a challenge in bulk materials. The two leading candidates for bulk chiral superconductors are UPt3 and Sr2RuO4, although evidence for broken time-reversal symmetry comes largely from surface-sensitive measurements. A long-sought demonstration of broken time-reversal symmetry in bulk Sr2RuO4 is the observation of edge currents, which has so far not been successful. The situation for UPt3 is not much bet- ter. Here, we use vortices to probe the superconducting state in ultraclean crystals of UPt3. Using small-angle neutron scattering, a strictly bulk probe, we demonstrate that the vortices possess an internal degree of freedom in one of its three superconducting phases, providing direct evidence for bulk broken time-reversal symmetry in this material.
Reference: K.E. Avers et al, Nature Physics 16, 531 (2020)
Read full article: here