Commissioning of the novel Continuous Angle Multi-energy Analysis spectrometer at the Paul Scherrer Institut
We report on the commissioning results of the cold neutron multiplexing secondary spectrometer CAMEA (Continuous Angle Multi-Energy Analysis) at the Swiss Spallation Neutron Source at the Paul Scherrer Institut, Switzerland. CAMEA is optimized for ...
Spin Density Wave versus Fractional Magnetization Plateau in a Triangular Antiferromagnet
We report an excellent realization of the highly nonclassical incommensurate spin-density wave (SDW) state in the quantum frustrated antiferromagnetic insulator Cs2CoBr4. In contrast to the well-known Ising spin chain case, here the SDW is stabilized by virtue of competing planar in-chain anisotropies and frustrated interchain exchange.
Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr
The van-der-Waals material CrSBr stands out as a promising two-dimensional magnet. Here, we report on its detailed magnetic and structural character- istics. We evidence that it undergoes a transition to an A-type anti- ferromagnetic state below TN ≈ 140 K with a pronounced two-dimensional character, preceded by ferromagnetic correlations within the monolayers. Furthermore, we unravel the low-temperature hidden-order within the long- range magnetically-ordered state. We find that it is associated to a slowing down of the magnetic fluctuations, accompanied by a continuous reorienta- tion of the internal field.
Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3
Topological magnon insulators constitute a growing field of research for their potential use as information carriers without heat dissipation. We report an experimental and theoretical study of the magnetic ground-state and excitations in the van der Waals two-dimensional honeycomb magnet ErBr3. We show that the magnetic properties of this compound are entirely governed by the dipolar interactions which generate a continuously degenerate non-collinear ground-state on the honeycomb lattice with spins confined in the plane.
Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6
Magnetic topological phases of quantum matter are an emerging frontier in physics and materials science, of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn6Sn6 using muon spin rotation, combined with local field analysis and neutron diffraction. Our studies identify an out-of-plane ferrimagnetic structure with slow magnetic fluctuations which exhibit a critical slowing down below T*C1 ≃ 120 K and finally freeze into static patches with ideal out-of-plane order below TC1 ≃ 20 K....
Waves on circular paths
Just as electrons flow through an electrical conductor, magnetic excitations can travel through certain materials. Such excitations, known in physics as "magnons" in analogy to the electron, could transport information much more easily than electrical conductors. An international research team has now made an important discovery on the way towards such components, which could be highly energy-efficient and considerably smaller.
Celebrating 25 years of SINQ
On January 17th, 2022, we celebrated the 25th anniversary of the inauguration of the Swiss Spallation Neutron Source SINQ. Today, SINQ is firmly embedded in the European research landscape and has established itself as an important center for neutron research.
Confirming the trilinear form of the optical magnetoelectric effect in the polar honeycomb antiferromagnet Co2Mo3O8
Magnetoelectric phenomena are intimately linked to relativistic effects and also require the material to break spatial inversion symmetry and time-reversal invariance. Magnetoelectric coupling can substantially affect light–matter interaction and lead to non-reciprocal light propagation. Here, we confirm on a fully experimental basis, without invoking either symmetry-based or material-specific assumptions, that the optical magnetoelectric effect in materials with non-parallel magnetization (M) and electric polarization (P) generates a trilinear term in the refractive index...
Amyloid β 42 fibril structure based on small-angle scattering
Alzheimers disease is one of the major global health challenges. Neuronal cell dysfunction and death are connected to the self-assembly of the amyloid β peptide (Aβ42) into oligomeric and fibrillar aggregates. The fibril surface can catalyze the formation of toxic oligomers via secondary nucleation.
Magnetic correlations in the triangular antiferromagnet FeGa2S4
The crystal structure and magnetic correlations in triangular antiferromagnet FeGa2S4 are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction, and neutron inelastic scattering. We report significant mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites.
Soft-mode dynamics in the ferroelectric phase transition of GeTe
GeTe that exhibits a strong anharmonicity and a ferroelectric phase transition between the rhombohedral and cubic structures has emerged as one of the leading thermoelectric materials. Herein, combining molecular dynamics simulations and inelastic neutron scattering measurements, the lattice dynamics in GeTe have been investigated to reveal the soft-mode mechanisms across the phase transition.
Vital role of magnetocrystalline anisotropy in cubic chiral skyrmion hosts
Magnetic anisotropy is anticipated to govern the formation of exotic spin textures reported recently in cubic chiral magnets, like low-temperature tilted conical and skyrmion lattice (SkL) states and metastable SkLs with various lattice geometry. Motivated by these findings, we quantified the cubic anisotropy in a series of CoZnMn-type cubic chiral magnets. We found that the strength of anisotropy is highly enhanced towards low temperatures. Moreover, not only the magnitude but also the character of cubic anisotropy drastically varies upon changing the Co/Mn ratio.
High-resolution neutron imaging reveals kinetics of water vapor uptake into a sessile water droplet
Various imaging methods in materials research have pursued the characterization of material composition and its change in space and time. When it comes to liquid matter far from equilibrium, such as mixing and evaporating mixtures of solutes and solvents, of paramount importance in diverse solution-processing methods, the quantitative and in situ characterization remains challenging. Our research with the evaporating ...
Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3
PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm.
Decomposing Magnetic Dark-Field Contrast in Spin Analyzed Talbot-Lau Interferometry: A Stern-Gerlach Experiment without Spatial Beam Splitting
We have recently shown how a polarized beam in Talbot-Lau interferometric imaging can be used to analyze strong magnetic fields through the spin dependent differential phase effect at field gradients. While in that case an adiabatic spin coupling with the sample field is required, here we investigate a nonadiabatic coupling causing a spatial splitting of the neutron spin states with respect to the external magnetic field. This subsequently leads to no phase contrast signal but a loss of interferometer visibility referred to as dark-field contrast.
Interdependent scaling of long-range oxygen and magnetic ordering in nonstoichiometric Nd2NiO4.10
The interplay between oxygen and spin ordering for the low oxygen doped Nd2NiO4.10 has been investigated by single-crystal neutron diffraction. We find a coexistence of the magnetic order below TN with the 3D ordering of excess oxygen atoms, which has not been previously observed for the homologous nickelates. Moreover, the magnetic ordering modulation vectors are no longer independent and exactly follow the modulation vectors of the oxygen ordering.
Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice
Quantum spin liquids are materials that feature quantum entangled spin correlations and avoid magnetic long-range order at T =0 K. Particularly interesting are two-dimensional honeycomb spin lattices where a plethora of exotic quantum spin liquids have been predicted. Here, we experimentally study an effective S = 1/2 Heisenberg honeycomb lattice with competing nearest and next-nearest-neighbour interactions.
Multiphase magnetism in Yb2Ti2O7
Quantum materials have properties that defy conventional theories of solids. Explaining these unusual properties is a frontier in physics, which promises both technological applications and fundamentally new states of matter. Yb2Ti2O7 is a center of attention in this work. While it becomes ferromagnetic at very low temperature, its excitation spectrum resembles that of a quantum spin liquid. We show using neutron scattering ...
Direct Observation of the Statics and Dynamics of Emergent Magnetic Monopoles in a Chiral Magnet
In the three-dimensional (3D) Heisenberg model, topological point defects known as spin hedgehogs behave as emergent magnetic monopoles, i.e., quantized sources and sinks of gauge fields that couple strongly to conduction electrons, and cause unconventional transport responses such as the gigantic Hall effect. We observe a dramatic change in the Hall effect upon the transformation of a spin hedgehog crystal in a chiral magnet MnGe through combined measurements of magnetotransport and small-angle neutron scattering (SANS).
Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings
Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications. Skyrmions have so far been observed in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, but theoretically skyrmions with anti-parallel neighbouring spins are also possible. Such antiferromagnetic skyrmions may allow more flexible control than conventional ferromagnetic skyrmions. Here, by combining neutron scattering measurements and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice is stabilized in MnSc2S4 through anisotropic couplings.
One-pot neutron imaging of surface phenomena, swelling and diffusion during methane absorption in ethanol and n-decane under high pressure
We study the gas diffusion in still liquids under gas high pressures. We demonstrate that the pressure-induced gas diffusion, liquid swelling and the liquid surface tension can be measured simultaneously in a one-pot experiment. The measurements are performed using the high-resolution neutron imaging in a non-tactile way. A major advantage of this new method is that the determination of surface tension necessitate no assumptions imposed on the properties of the liquid.
Momentum-Dependent Magnon Lifetime in the Metallic Noncollinear Triangular Antiferromagnet CrB2
Noncollinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic noncollinear antiferromagnet CrB2, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping ...
Macroscopic manifestation of domain-wall magnetism and magnetoelectric effect in a Néel-type skyrmion host
We report a magnetic state in GaV4Se8 which emerges exclusively in samples with mesoscale polar domains and not in polar mono- domain crystals. It is manifested by a sharp anomaly in the magnetic susceptibility and the magnetic torque, distinct from other anomalies observed also in polar mono-domain samples upon transitions between the cycloidal, the Néel-type skyrmion lattice and the ferromagnetic states.
Thermal Control of Spin Excitations in the Coupled Ising-Chain Material RbCoCl3
We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S=1/2) antiferromagnetic Ising chains in RbCoCl3. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure ...
Phase boundary dynamics of bubble flow in a thick liquid metal layer under an applied magnetic field
We investigate argon bubble flow in liquid gallium within a container large enough to avoid wall effects. Flow with and without applied horizontal magnetic field is studied. We demonstrate the successful capture and quantification of the effects of applied magnetic field using dynamic neutron radiography and the previously developed and validated robust image processing pipeline, supported by the in silico reproduction of our experiment.
Zooming in on water splitting
Perovskite oxynitride materials can act as effective photocatalysts for water splitting driven by visible light. A combined neutron and x-ray study now provides unique insight into the underlying processes at the solid–liquid interface and highlights how solar-to-hydrogen conversion can be improved.
Understanding Quantum Critical Magnetism in Han Purple
The ancient purple pigment used to paint the terracotta warriors, BaCuSi2O6, is also a quantum magnetic material which consists of stacked Cu2+ bilayers hosting spin dimers. Magnetometry and NMR experiments have revealed puzzling critical phenomena at the quantum phase transition (QPT) caused by an applied magnetic field, which suggest that the universal behaviour of the system is not three- but only two-dimensional. By performing high-resolution neutron spectroscopy measurements .....
Batteries under the neutron stroboscope
The first application of stroboscopic neutron diffraction to studying lithium-ion batteries during operation establishes a new approach to unravelling the complex processes playing out in energy-storage materials.
Examining the surface evolution of LaTiOxNy an oxynitride solar water splitting photocatalyst
LaTiOxNy oxynitride thin films are employed to study the surface modifications at the solid- liquid interface that occur during photoelectrocatalytic water splitting. Neutron reflectometry and grazing incidence x-ray absorption spectroscopy were utilised to distinguish between the surface and bulk signals, with a surface sensitivity of 3 nm.
A quantum liquid of magnetic octupoles on the pyrochlore lattice
With experimental work demonstrating that the correlated ground state of the pyrochlore system Ce2Sn2O7 is a quantum liquid of magnetic octupoles, an international team led by PSI researcher Romain Sibille establishes a fundamentally new state of matter: higher-rank multipole ice.