The Coulomb phase is an idealized state of matter whose properties are determined by factors beyond conventional consid- erations of symmetry, including global topology, conservation laws and emergent order. Theoretically, Coulomb phases occur in ice-type systems such as water ice and spin ice; in dimer models; and in certain spin liquids. However, apart from ice-type systems, more general experimental examples are very scarce. Here we study the partly disordered material CsNiCrF6 and show that this material is a multiple Coulomb phase with signature correlations in three degrees of freedom: charge configurations, atom displacements and spin configurations. We use neutron and X-ray scattering to separate these correlations and to deter- mine the magnetic excitation spectrum. Our results show how the structural and magnetic properties of apparently disordered materials may inherit, and be dictated by, a hidden symmetry—the local gauge symmetry of an underlying Coulomb phase.
Reference: T. Fennell et al, Nature Physics, adv. online publication (2018)
Read full article: here