Lab News & Scientific Highlights

ultrafast diffraction scheme

Strong modulation of carrier effective mass in WTe2 via coherent lattice manipulation

Schematic ultrafast surface diffraction setup used for monitoring the crystal lattice in multiple directions.

Phase fractions in Ti-6Al-4V-3Fe

In situ alloying during additive manufacturing

In situ alloying is an effective method to engineer microstructures of additively manufactured Ti6Al4V3Fe alloys. 

LPBF Acoustic Emission

Deep learning-based monitoring of laser powder bed fusion processes

We present a novel monitoring strategy for 3D print processes that consists of developing and training a hybrid machine learning model that can classify regimes across different time scales based on heterogeneous sensing data. 

hybrid perovskites

Mechanochromism of layered perovskites

The mechanochromism of hybrid 2D perovskites is probed at pressures compatible with practical applications

teaser

Direct mechanochemical synthesis of polyoxometalates

Polyoxomolybdates have been directly synthesized from basic reagents in a mechanochemical one-pot reaction.

Peter Alpert working in the laboratory

Light amplification accelerates chemical reactions in aerosols

Aerosols in the atmosphere react to incident sunlight. This light is amplified in the interior of the aerosol droplets and particles, accelerating reactions. ETH and PSI researchers have now been able to demonstrate and quantify this effect and recommend factoring it into future climate models.

Al3(Sc,Zr)

Thermal and phase evolution during laser powder bed fusion of Al-Sc-Zr elemental powder blends

The reaction of elemental scandium and zirconium powders with liquid aluminum is observed directly via operando X-ray diffraction during laser 3D printing. This work demonstrates that elemental blends can be used to create fine-grained crack-free Al-alloys and highlights the importance of feature size.

toc_nl_trlamni_.gif

Into the fourth dimension: time-resolved soft X-ray laminography

Combining time-resolved soft X-ray STXM imaging with magnetic laminography, researchers were able to investigate magnetization dynamics in a ferromagnetic microstructure resolved in all three spatial dimensions and in time. Thanks to the possibility of freely selecting the frequency of the excitation applied to the magnetic element, this technique opens the possibility to investigate resonant magneto-dynamical processes, such as e.g. magnetic vortex core gyration and switching, and spinwave emission.

Hercules School 2022 group photo

Hercules School 2022

PSI hosted again the Hercules School in March 2022. We had the pleasure to welcome 20 international PhD students, PostDocs and scientists to demonstrate our state-of-the-art techniques and methodologies at our large scale facilities, the Swiss Light Source (SLS), the Swiss Spallation Neutron Source (SINQ) and our free electron laser SwissFEL.

Layered crystal structure

Exchange scaling of ultrafast angular momentum transfer in 4f antiferromagnets

A novel approach to controlling the speed of magnetic processes has been found through resonant magnetic scattering in an antiferromagnetic Lanthanide intermetallics.

Operando radiography

Direct observation of crack formation mechanisms with operando Laser Powder Bed Fusion X-ray radiography

Operando high-speed X-ray radiography experiments reveal the cracking mechanism during 3D laser printing of a Ni superalloy.

Texture red gold

Understanding variant selection and texture in additively manufactured red-gold alloys

Synchrotron X-ray diffraction experiments reveal the presence of a non- negligible amount of tetragonal phase in 3D printed red-gold samples. 

Double Helix Spin configuration

3D printed nanomagnets unveil a world of patterns in the magnetic field

Scientists have used state-of-the-art 3D printing and microscopy to provide a new glimpse of what happens when taking magnets to three-dimensions on the nanoscale – 1000 times smaller than a human hair.

amb_cu_teaser

Fingerprint of Copper in Peptides Linked to Alzheimer's Disease

In an interdisciplinary project, researchers from the Laboratory of Nanoscale Biology in BIO  and the Laboratory for Condensed Matter in PSD have revealed the reaction between the nitrogen atoms of the amyloid-beta peptide and copper/zinc ions by using soft X-ray absorption spectroscopy.

Supercooled liquid water Xray structure factor

Anomalous temperature dependence of the experimental x-ray structure factor of supercooled water

Supercooled water scattering signals show an anolmalous structure factor temperature dependence suggesting decreasing density at lowering temperatures below 236 K (-37°C).

eunige

Ultrafast electron localization

This experiment performed at SwissFEL shows how fast we can localize electrons out of an electron gas into correlated, well localized states of a material. It is based on a combined ultrafast x-ray absorption and diffraction experiment on an intermetallic system.

toc fig nno

Creating novel quantum phases via the heterostructure engineering

Within this synergetic collaboration, PSI scientists have investigated the correlation between magnetic and electronic ordering in NdNiO3 by tuning its properties through proximity to a ferromagnetic manganite layer. The main outcome is that the stray magnetic field from the manganite layer causes a novel ferromagnetic-metallic (FM-M) phase in NNO. This work demonstrates the utilization of heterostructure engineering for creating novel quantum phases.

teaser

Hindering the magnetic dead layer in manganites

The authors demonstrate the stability of ferromagnetic order of one unit cell thick optimally doped manganite (La0.7Ba0.3MnO3, LBMO) epitaxially grown between two layers of SrRuO3 (SRO). LBMO shows ferromagnetism even above SRO Tc. Density Functional Theory calculations help understand the reasons behind this interesting result.

Hercules teaser

HERCULES SCHOOL 2021 AT PSI

During the week of March 15 – 19, we had the pleasure to welcome 20 international PhD students, PostDocs and assistant professors at PSI, taking part in the first virtual HERCULES SCHOOL on Neutrons & Synchrotron Radiation.

Focusing of spinwaves from a deformed vortex core

Spin-wave emission from vortex cores under static magnetic bias fields

Employing time-resolved STXM imaging, researchers investigated the emission of spin waves from a magnetic vortex core. By applying static magnetic fields, the control of both the shape of the vortex core and of the spatial profile of the emitted spin waves could be demonstrated, allowing for the fabrication of field-tunable spin wave focusing elements.