HERO PROJECT: Hidden Entangled and Resonating Orders
To further the understanding of quantum properties of materials, four expert scientists have been awarded a 14 million Euro ERC Synergy Grant, administered by the European Research Council (ERC) of the European Union.
The team consists of three scientists in Switzerland and one in Sweden: Gabriel Aeppli at PSI, Henrik Rønnow at EPFL, Nicola Spaldin at ETH Zurich and Alexander Balatsky at Nordita, Stockholm University. Their joint research aims to uncover hidden quantum properties in known materials, meaning properties that could not be seen by methods employed up to now.
The researchers called their joint research project HERO which stands for Hidden, entangled and resonating orders – all of which are important quantum properties they will look at in order to discover possible materials of the future. To achieve this, the expert scientists will use the several large research facilities at PSI for complementary investigations and exploit the computing power of the Swiss National Supercomputing Centre CSCS of the ETH Zurich in Lugano for data processing and theoretical calculations.
The HERO project is half a way through and significant progress has been already achieved including:
- The development of a scheme to create pairs of exact copies of XFEL pulses with controlled time spacings as well as the demonstration of soft X-ray side-band formation via optical seeding at SwissFEL. These accomplishments will lead to the ability to measure the more complex electronic correlations associated with the hidden order which is the main theme of this project.
- The development of the theoretical methodology for the understanding of magnetoelectric multipoles.
- Magnetoelectric Classification of Skyrmions.
- The discovery of a finite-temperature critical point in the pressure-temperature phase diagram of SrCu2(BO3)2 .
- The development of modeling and experimental proof of BEC of magnons in multiband condensate in YiG.
- The development of Kapitza engineering for quantum paraelectrics.
A full list of publications (over 100 peer-reviewed papers) where these and other achievements and outcomes are reported is presented below.
Highlights
Publications
-
Aidukas T, Phillips NW, Diaz A, Poghosyan E, Müller E, Levi AFJ, et al.
High-performance 4-nm-resolution X-ray tomography using burst ptychography
Nature. 2024; 632(8023): 81-88. https://doi.org/10.1038/s41586-024-07615-6
DORA PSI -
Beckert A, Grimm M, Wili N, Tschaggelar R, Jeschke G, Matmon G, et al.
Emergence of highly coherent two-level systems in a noisy and dense quantum network
Nature Physics. 2024; 20: 472-478. https://doi.org/10.1038/s41567-023-02321-y
DORA PSI -
Constantinou P, Stock TJZ, Tseng LT, Kazazis D, Muntwiler M, Vaz CAF, et al.
EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning
Nature Communications. 2024; 15(1): 694 (13 pp.). https://doi.org/10.1038/s41467-024-44790-6
DORA PSI -
Prat E, Hu W, Arrell C, Calvi M, Dijkstal P, Follath R, et al.
Experimental demonstration of mode-coupled and high-brightness self-amplified spontaneous emission in an X-ray free-electron laser
Physical Review Letters. 2024; 133(20): 205001 (6 pp.). https://doi.org/10.1103/PhysRevLett.133.205001
DORA PSI -
Zhang W, Asmara TC, Tseng Y, Li J, Xiong Y, Wei Y, et al.
Spin waves and orbital contribution to ferromagnetism in a topological metal
Nature Communications. 2024; 15(1): 8905 (9 pp.). https://doi.org/10.1038/s41467-024-53152-1
DORA PSI -
Živković I, Soh JR, Malanyuk O, Yadav R, Pisani F, Tehrani AM, et al.
Dynamic Jahn-Teller effect in the strong spin-orbit coupling regime
Nature Communications. 2024; 15(1): 8587 (10 pp.). https://doi.org/10.1038/s41467-024-52935-w
DORA PSI -
Calvi M, Liang X, Ferrari E, Alarcon A, Prat E, Reiche S, et al.
Versatile modulators for laser-based FEL seeding at SwissFEL
Journal of Synchrotron Radiation. 2023; 30: 276-283. https://doi.org/10.1107/S1600577522012073
DORA PSI -
D'Anna N, Ferreira Sanchez D, Matmon G, Bragg J, Constantinou PC, Stock TJZ, et al.
Non-destructive X-Ray imaging of patterned Delta-Layer devices in silicon
Advanced Electronic Materials. 2023; 2023: 202201212 (8 pp.). https://doi.org/10.1002/aelm.202201212
DORA PSI -
Prat E, Al Haddad A, Arrell C, Augustin S, Boll M, Bostedt C, et al.
An X-ray free-electron laser with a highly configurable undulator and integrated chicanes for tailored pulse properties
Nature Communications. 2023; 14: 5069 (11 pp.). https://doi.org/10.1038/s41467-023-40759-z
DORA PSI -
Ueda H, García-Fernández M, Agrestini S, Romao CP, van den Brink J, Spaldin NA, et al.
Chiral phonons in quartz probed by X-rays
Nature. 2023; 618: 946-950. https://doi.org/10.1038/s41586-023-06016-5
DORA PSI -
Wen Y, Giorgianni F, Ilyakov I, Quan B, Kovalev S, Wang C, et al.
A universal route to efficient non-linear response via Thomson scattering in linear solids
National Science Review. 2023; 10(7): nwad136 (10 pp.). https://doi.org/10.1093/nsr/nwad136
DORA PSI -
Beckert A, Grimm M, Hermans RI, Freeman JR, Linfield EH, Davies AG, et al.
Precise determination of the low-energy electronuclear Hamiltonian of LiY1-xHoxF4
Physical Review B. 2022; 106(11): 115119 (11 pp.). https://doi.org/10.1103/PhysRevB.106.115119
DORA PSI -
Finizio S, Bailey JB, Olsthoorn B, Raabe J
Periodogram-based detection of unknown frequencies in time-resolved scanning transmission X-ray microscopy
ACS Nano. 2022; 16(12): 21071-21078. https://doi.org/10.1021/acsnano.2c08874
DORA PSI -
Reiche S, Knopp G, Pedrini B, Prat E, Aeppli G, Gerber S
A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2022; 119(7): e2117906119 (5 pp.). https://doi.org/10.1073/pnas.2117906119
DORA PSI -
Aeppli G, Balatsky AV, Rønnow HM, Spaldin NA
Hidden, entangled and resonating order
Nature Reviews Materials. 2020; 5(7): 477-479. https://doi.org/10.1038/s41578-020-0207-z
DORA PSI -
Beckert A, Sigg H, Aeppli G
Taking advantage of multiplet structure for lineshape analysis in Fourier space
Optics Express. 2020; 28(17): 24937-24950. https://doi.org/10.1364/OE.395877
DORA PSI -
Dehn MH, Shenton JK, Holenstein S, Meier QN, Arseneau DJ, Cortie DL, et al.
Observation of a charge-neutral muon-polaron complex in antiferromagnetic Cr2O3
Physical Review X. 2020; 10(1): 011036 (18 pp.). https://doi.org/10.1103/PhysRevX.10.011036
DORA PSI -
Hermans RI, Seddon J, Shams H, Ponnampalam L, Seeds AJ, Aeppli G
Ultra-high-resolution software-defined photonic terahertz spectroscopy
Optica. 2020; 7(10): 1445-1455. https://doi.org/10.1364/OPTICA.397506
DORA PSI -
Krieger JA, Pertsova A, Giblin SR, Döbeli M, Prokscha T, Schneider CW, et al.
Proximity-induced odd-frequency superconductivity in a topological insulator
Physical Review Letters. 2020; 125(2): 026802 (6 pp.). https://doi.org/10.1103/PhysRevLett.125.026802
DORA PSI -
Müller M, Derlet PM, Mudry C, Aeppli G
Testing of asymptomatic individuals for fast feedback-control of COVID-19 pandemic
Physical Biology. 2020; 17(6): 065007 (20 pp.). https://doi.org/10.1088/1478-3975/aba6d0
DORA PSI
Eric Bousquet, Eddy Lelièvre-Berna, Navid Qureshi, Jian-Rui Soh, Nicola A Spaldin, Andrea Urru, Xanthe H Verbeek and Sophie F Weber
On the sign of the linear magnetoelectric coefficient in Cr2O3
J. Phys.: Condens. Matter 2024. 36: 155701. https://doi.org/10.1088/1361-648x/ad1a59
Fabian Jäger, Nicola A. Spaldin, and Sayantika Bhowal
Universal responses in nonmagnetic polar metals
Phys. Rev. Research. 2024. 6: 013251. https://doi.org/10.1103/PhysRevResearch.6.013251
Sayantika Bhowal and Nicola A. Spaldin
Ferroically Ordered Magnetic Octupoles in d-Wave Altermagnets
Phys. Rev. X. 2024. 14: 011019. https://doi.org/10.1103/PhysRevX.14.011019
Riccardo Catena, Timon Emken, Marek Matas, Nicola A. Spaldin, and Einar Urdshals
Direct searches for general dark matter-electron interactions with graphene detectors: Part I. Electronic structure calculations
Phys. Rev. Research. 2023. 5: 043257. https://doi.org/10.1103/PhysRevResearch.5.043257
Riccardo Catena, Timon Emken, Marek Matas, Nicola A. Spaldin, and Einar Urdshals
Direct searches for general dark matter-electron interactions with graphene detectors: Part II. Sensitivity studies
Phys. Rev. Research. 2023. 5: 043258. https://doi.org/10.1103/PhysRevResearch.5.043258
Carl P. Romao, Riccardo Catena, Nicola A. Spaldin, and Marek Matas
Chiral phonons as dark matter detectors
Phys. Rev. Research. 2023. 5: 043262. https://doi.org/10.1103/PhysRevResearch.5.043262
Luca Schaufelberger, Maximilian E. Merkel, Aria Mansouri Tehrani, Nicola A. Spaldin, and Claude Ederer
Exploring energy landscapes of charge multipoles using constrained density functional theory
Phys. Rev. Research. 2023. 5: 033172. https://doi.org/10.1103/PhysRevResearch.5.033172
Andrea Urru, Jian-Rui Soh, Navid Qureshi, Anne Stunault, Bertrand Roessli, Henrik M. Rønnow, and Nicola A. Spaldin
Neutron scattering from local magnetoelectric multipoles: A combined theoretical, computational, and experimental perspective
Phys. Rev. Research. 2023. 5: 033147. https://doi.org/10.1103/PhysRevResearch.5.033147
Bhowal, Sayantika; Spaldin, Nicola A.
Polar Metals: Principles and Prospects
Annual Review of Materials Research. 2023. 53: 53-79. https://doi.org/10.1146/annurev-matsci-080921-105501
Frey, Ramon; Grosso, Bastien F.; Fandré, Pascal; et al.
Accelerated search for new ferroelectric materials
Physical Review Research. 2023. 5(2): 023122. https://doi.org/10.1103/physrevresearch.5.023122
Vogel, Alexander; Ruiz Caridad, Alicia; Nordlander, Johanna; et al.
Origin of the Critical Thickness in Improper Ferroelectric Thin Films
ACS Applied Materials & Interfaces. 2023. 15(14): 18482 - 18492. https://doi.org/10.3929/ethz-b-000606258
Experimental and theoretical thermodynamic studies in Ba2MgReO6—the ground state in the context of Jahn-Teller effect
Journal of Physics: Condensed Matter. 2023. 35(24): 245603. https://doi.org/10.1088/1361-648X/acc62a
Weber, Sophie F.; Spaldin, Nicola A.
Characterizing and Overcoming Surface Paramagnetism in Magnetoelectric Antiferromagnets
Physical Review Letters. 2023. 130(14): 146701. https://doi.org/10.1103/PhysRevLett.130.146701
Chiral phonons in quartz probed by X-rays
Nature. 2023. 618(7967): 946 - 950. https://doi.org/10.1038/s41586-023-06016-5
Mansouri Tehrani, Aria; Soh, Jian-Rui; Pásztorová, Jana; et al.
Charge multipole correlations and order in Cs2TaCl6
Physical Review Research. 2023. 5(1): L012010. https://doi.org/10.1103/PhysRevResearch.5.L012010
Xanthe H. Verbeek, Andrea Urru, and Nicola A. Spaldin
Hidden orders and (anti-)magnetoelectric effects in Cr2O3 and α−Fe2O3
Phys. Rev. Research. 2023. 5:L042018.
Esswein, Tobias; Spaldin, Nicola A.
Ferroelectric, quantum paraelectric, or paraelectric? Calculating the evolution from BaTiO3 to SrTiO3 to KTaO3 using a single-particle quantum mechanical description of the ions
Physical Review Research. 2022; 4 (3): 033020. https://doi.org/10.1103/PhysRevResearch.4.033020
Tosic, Tara Niamh; Meier, Quintin N.; Spaldin, Nicola A.
Influence of the triangular Mn-O breathing mode on magnetic ordering in multiferroic hexagonal manganites Physical Review Research. 2022 4(3): 033204. https://doi.org/10.3929/ethz-b-000573854
Bhowal, Sayantika; Spaldin, Nicola A.
Magnetoelectric Classification of Skyrmions
Physical Review Letters. 2022. 128(22): 227204. https://doi.org/10.1103/PhysRevLett.128.227204
Grosso, Bastien Francesco; Spaldin, Nicola A.; Mansouri Tehrani, Aria
Physics-Guided Descriptors for Prediction of Structural Polymorphs
The Journal of Physical Chemistry Letters. 2022. 13(31): 7342 - 7349. https://doi.org/10.1021/acs.jpclett.2c01876
Urru, Andrea; Spaldin, Nicola A.
Magnetic octupole tensor decomposition and second-order magnetoelectric effect
Annals of Physics. 2022. 447: 168964.https://doi.org/10.1016/j.aop.2022.168964
Kim, Donghoon; Efe, Ipek; Torlakcik, Harun; et al.
Magnetoelectric Effect in Hydrogen Harvesting: Magnetic Field as a Trigger of Catalytic Reactions
Advanced Materials. 2022; 34 (19): 2110612. https://doi.org/10.1002/adma.202110612
Bhowal, Sayantika; Collins, Stephen P.; Spaldin, Nicola A.
Hidden k -Space Magnetoelectric Multipoles in Nonmagnetic Ferroelectrics
Physical Review Letters. 2022; 128 (11): 116402.https://doi.org/10.1103/PhysRevLett.128.116402
Meier, Quintin N.; Hickox-Young, Daniel; Laurita, Geneva; et al.
Leggett Modes Accompanying Crystallographic Phase Transitions
Physical Review X. 2022; 12 (1): 011024. https://doi.org/10.1103/PhysRevX.12.011024
Gattinoni, Chiara; Spaldin, Nicola A.
Prediction of a strong polarizing field in thin film paraelectrics
Physical Review Research. 2022; 4 (3): L032020. https://doi.org/10.1103/PhysRevResearch.4.L032020
Bhowal, Sayantika; O'Neill, Daniel; Fechner, Michael; et al.
Anti-symmetric Compton scattering in LiNiPO4: Towards a direct probe of the magneto-electric multipole moment
Open Research Europe. 2021; 1: 132. https://doi.org/10.12688/openreseurope.13863.1
Mansouri Tehrani, Aria; Spaldin, Nicola A.
Untangling the structural, magnetic dipole, and charge multipolar orders in Ba2MgReO6
Physical Review Materials. 2021; 5 (10): 104410. https://doi.org/10.1103/physrevmaterials.5.104410
Bhowal, Sayantika; Spaldin, Nicola A.
Revealing hidden magnetoelectric multipoles using Compton scattering
Physical Review Research. 2021. 3(3): 033185. https://doi.org/10.1103/physrevresearch.3.033185
Catena, Riccardo; Emken, Timon; Matas, Marek; et al.
Crystal responses to general dark matter-electron interactions
Physical Review Research. 2021; 3(3): 033149. https://doi.org/10.1103/physrevresearch.3.033149
Michel, Veronica F.; Esswein, Tobias; Spaldin, Nicola A.
Interplay between ferroelectricity and metallicity in BaTiO3
Journal of Materials Chemistry C. 2021; 9(27): 8640 - 8649. https://doi.org/10.1039/d1tc01868j
Giraldo Castaño, Leidy Marcela; Meier, Quintin N.; Bortis, Amadé; et al.
Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order
Nature Communications. 2021; 12(1): 3093. https://doi.org/10.1038/s41467-021-22587-1
Spaldin, Nicola A.; Efe, Ipek; Rossell, Marta D.; et al.
Layer and spontaneous polarizations in perovskite oxides and their interplay in multiferroic bismuth ferrite
The Journal of Chemical Physics. 2021; 154 (15): 154702. https://doi.org/10.1063/5.0046061
Efe, Ipek; Spaldin, Nicola A.; Gattinoni, Chiara
On the happiness of ferroelectric surfaces and its role in water dissociation: The example of bismuth ferrite
The Journal of Chemical Physics. 2021; 154 (2): 024702. https://doi.org/10.1063/5.0033897
Dehn, Martin H.; Shenton, J. Kane; Arseneau, Donald J.; et al.
Local Electronic Structure and Dynamics of Muon-Polaron Complexes in Fe2 O3
Physical Review Letters. 2021; 126 (3): 037202. https://doi.org/10.1103/PhysRevLett.126.037202
Spaldin, Nicola
Analogy between the Magnetic Dipole Moment at the Surface of a Magnetoelectric and the Electric Charge at the Surface of a Ferroelectric
Žurnal Èksperimental'noj i Teoretičeskoj Fiziki. 2021; 159 (4). https://doi.org/10.1134/S1063776121040208
Juraschek, Dominik M.; Meier, Quintin N.; Narang, Prineha
Parametric Excitation of an Optically Silent Goldstone-Like Phonon Mode
Physical Review Letters. 2020; 124 (11): 117401. https://doi.org/10.1103/PhysRevLett.124.117401
Spaldin, Nicola
Multiferroics beyond electric-field control of magnetism
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2020; 476 (2233): 20190542. https://doi.org/10.1098/rspa.2019.0542
Catena, Riccardo; Emken, Timon; Spaldin, Nicola; et al.
Atomic responses to general dark matter-electron interactions
Physical Review Research. 2020; 2 (3): 033195. https://doi.org/10.1103/physrevresearch.2.033195
Juraschek, Dominik M.; Narang, Prineha; Spaldin, Nicola
Phono-magnetic analogs to opto-magnetic effects
Physical Review Research. 2020; 2 (4): 043035. https://doi.org/10.1103/PhysRevResearch.2.043035
Dehn, Martin H.; Shenton, John K.; Holenstein, Stefan; et al.
Observation of a Charge-Neutral Muon-Polaron Complex in Antiferromagnetic Cr2O3
Physical Review X. 2020; 10 (1): 011036. https://doi.org/10.1103/PhysRevX.10.011036
Thöle, Florian; Keliri, Andriani; Spaldin, Nicola
Concepts from the linear magnetoelectric effect that might be useful for antiferromagnetic spintronics
Journal of Applied Physics. 2020; 127 (21): 213905. https://doi.org/10.1063/5.0006071
Meier, Quintin N.; Stucky, Adrien; Teyssier, Jeremie; et al.
Manifestation of structural Higgs and Goldstone modes in the hexagonal manganites
Physical Review. 2020; 102 (1): 014102. https://doi.org/10.1103/PhysRevB.102.014102
Otto H. J. Mustonen, Ellen Fogh, Joseph A. M. Paddison, Lucile Mangin-Thro, Thomas Hansen, Helen Y. Playford, Maria Diaz-Lopez, Peter Babkevich, Sami Vasala, Maarit Karppinen, Edmund J. Cussen, Henrik M. Ro̷nnow, and Helen C. Walker
Structure, Spin Correlations, and Magnetism of the S = 1/2 Square-Lattice Antiferromagnet Sr2CuTe1–xWxO6 (0 ≤ x ≤ 1)
Chem. Mater. 2024, 36, 1, 501–513. https://doi.org/10.1021/acs.chemmater.3c02535
Ellen Fogh, Mithilesh Nayak, Oleksandr Prokhnenko, Maciej Bartkowiak, Koji Munakata, Jian-Rui Soh, Alexandra A. Turrini, Mohamed E. Zayed, Ekaterina Pomjakushina, Hiroshi Kageyama, Hiroyuki Nojiri, Kazuhisa Kakurai, Bruce Normand, Frédéric Mila & Henrik M. Rønnow
Field-induced bound-state condensation and spin-nematic phase in SrCu2(BO3)2 revealed by neutron scattering up to 25.9 T
Nature Communications. 2024 .15: 442. https://doi.org/10.1038/s41467-023-44115-z
Ellen Fogh, Bastian Klemke, Manfred Reehuis, Philippe Bourges, Christof Niedermayer, Sonja Holm-Dahlin, Oksana Zaharko, Jürg Schefer, Andreas B. Kristensen, Michael K. Sørensen, Sebastian Paeckel, Kasper S. Pedersen, Rasmus E. Hansen, Alexandre Pages, Kimmie K. Moerner, Giulia Meucci, Jian-Rui Soh, Alessandro Bombardi, David Vaknin, Henrik. M. Rønnow, Olav F. Syljuåsen, Niels B. Christensen & Rasmus Toft-Petersen
Tuning magnetoelectricity in a mixed-anisotropy antiferromagnet
Nature Communications. 2023 14: 3408. https://doi.org/10.1038/s41467-023-39128-7
Ellen Fogh, Bastian Klemke, Alexandre Pages, Jiying Li, David Vaknin, Henrik M. Rønnow, Niels B. Christensen, Rasmus Toft-Petersen
The magnetoelectric effect in LiFePO – revisited
Physica B Condensed Matter Volume. 2023. 648: 414380. https://doi.org/10.1016/j.physb.2022.414380.
Ivica Živković, Ravi Yadav, Jian-Rui Soh, ChangJiang Yi, YouGuo Shi, Oleg V. Yazyev, and Henrik M. Rønnow
Unraveling the origin of the peculiar transition in the magnetically ordered phase of the Weyl semimetal Co3Sn2S2
Phys. Rev. B. 2022. 106: L180403. https://doi.org/10.1103/PhysRevB.106.L180403.
J. Larrea Jimenez; S. P. G. Crone; E. Fogh; M. E. Zayed; R. Lortz et al.
A quantum magnetic analogue to the critical point of water
Nature. 2021. 592: 370–375. https://doi.org/10.1038/s41586-021-03411-8
Ping Huang, Marco Cantoni, Arnaud Magrez, Fabrizio Carbonec and Henrik M. Rønnow
Electric field writing and erasing of skyrmions in magnetoelectric Cu2OSeO3 with an ultralow energy barrier
Nanoscale, 2022. 14, 16655-16660. https://doi.org/10.1039/D2NR04399H.
Luc Testa, Peter Babkevich, Yasuyuki Kato, Kenta Kimura, Virgile Favre, Jose A. Rodriguez-Rivera, Jacques Ollivier, Stéphane Raymond, Tsuyoshi Kimura, Yukitoshi Motome, Bruce Normand, and Henrik M. Rønnow
Spin dynamics in the square-lattice cupola system Ba(TiO)Cu4(PO4)4
Phys. Rev. B. 2022. 105: 214406 . https://doi.org/10.1103/PhysRevB.105.214406.
E. Fogh, O. Mustonen, P.Babkevich, V. M. Katukuri, H.C. Walker et al.
Randomness and frustration in a S=1/2 square-lattice Heisenberg antiferromagnet
Physical Review B. 2022; 105: 184410. https://doi.org/10.1103/PhysRevB.105.184410
H. Papi; V. Y. Favre; H. Ahmadvand; M. Alaei; M. Khondabi et al.
Magnetic and structural properties of Ni-substituted magnetoelectric Co4Nb2O9
Physical Review B. 2019; 100:134408. https://doi.org/10.1103/PhysRevB.100.134408
P. Huang; T. Schonenberger; M. Cantoni; L. Heinen; A. Magrez et al.
Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase
Nature Nanotechnology. 2020; 15: 761–767. https://doi.org/10.1038/s41565-020-0716-3
L. Testa; V. Surija; K. Prsa; P. Steffens; M. Boehm et al.
Triplons, magnons, and spinons in a single quantum spin system: SeCuO3
Physical Review B. 2021; 103: L020409. https://doi.org/10.1103/PhysRevB.103.L020409
Adway Kumar Das, Anandamohan Ghosh, and Ivan M. Khaymovich
Robust nonergodicity of the ground states in the β ensemble
Phys. Rev. B. 2024. 109: 064206. https://doi.org/10.1103/PhysRevB.109.064206
Bart Olsthoorn
Persistent homology of quantum entanglement
Phys. Rev. B. 2023. 107: 115174. https://doi.org/10.1103/PhysRevB.107.115174
Patrick J. Wong and Alexander V. Balatsky
Appearance of odd-frequency superconductivity in a relativistic scenario
Phys. Rev. B . 2023. 108: 014510. https://doi.org/10.1103/PhysRevB.108.014510
Madhumita Sarkar, Roopayan Ghosh, and Ivan M. Khaymovich
Tuning the phase diagram of a Rosenzweig-Porter model with fractal disorder
Phys. Rev. B . 2023. 108: L060203
Jun Gao, Ivan M. Khaymovich, Adrian Iovan, Xiao-Wei Wang, Govind Krishna, Ze-Sheng Xu, Emrah Tortumlu, Alexander V. Balatsky, Val Zwiller, and Ali W. Elshaari
Coexistence of extended and localized states in finite-sized mosaic Wannier-Stark lattices
Phys. Rev. B. 2023. 108: L140202. https://doi.org/10.1103/PhysRevB.108.L140202
Giuseppe De Tomasi and Ivan M. Khaymovich
Non-Hermiticity induces localization: Good and bad resonances in power-law random banded matrices
Phys. Rev. B. 2023. 108: L180202. https://doi.org/10.1103/PhysRevB.108.L180202
R. Matthias Geilhufe
Dynamic electron-phonon and spin-phonon interactions due to inertia
Physical Review Research. 2022; 4: L012004. https://doi.org/10.1103/PhysRevResearch.4.L012004
Giuseppe De Tomasi and Ivan M. Khaymovich
Non-Hermitian Rosenzweig-Porter random-matrix ensemble: Obstruction to the fractal phase
Phys. Rev. B . 2022. 106: 094204. https://doi.org/10.1103/PhysRevB.106.094204
Aamna Ahmed, Ajith Ramachandran, Ivan M. Khaymovich, and Auditya Sharma
Flat band based multifractality in the all-band-flat diamond chain
Phys. Rev. B . 2022. 106: 205119. https://doi.org/10.1103/PhysRevB.106.205119
Xiaolong Deng, Alexander L. Burin, Ivan M. Khaymovich
Anisotropy-mediated reentrant localization
SciPost Phys. 2022. 13: 116. https://doi: 10.21468/SciPostPhys.13.5.116
A. D. Mahabir, A. V. Balatsky, and J. T. Haraldsen
Understanding the onset of negative electronic compressibility in single-band and two-band two-dimensional electron gases: Application to LaAlO3/SrTiO3
Phys. Rev. B. 2021. 103: 125141. https://doi.org/10.1103/PhysRevB.103.125141
Dushko Kuzmanovski, Rubén Seoane Souto, and Alexander V. Balatsky.
Persistent current noise in narrow Josephson junctions
Phys. Rev. B . 2021. 104: L100505. https://doi.org/10.1103/PhysRevB.104.L100505
Anna Pertsova, Peter Johnson, Daniel P. Arovas, and Alexander V. Balatsky
Dirac node engineering and flat bands in doped Dirac materials
Phys. Rev. Research. 2021: 033001. https://doi.org/10.1103/PhysRevResearch.3.033001
P. O. Sukhachov, S. Banerjee, and A. V. Balatsky
Bose-Einstein condensate of Dirac magnons: Pumping and collective modes
Phys. Rev. Research. 2021. 3: 013002. https://doi.org/10.1103/PhysRevResearch.3.013002
J. Franklin, B. Xu, D. Davino, A. Mahabir, A. V. Balatsky, U. Aschauer, and I. Sochnikov
Giant Grüneisen parameter in a superconducting quantum paraelectric
Phys. Rev. B. 2021. 103: 214511. https://doi.org/10.1103/PhysRevB.103.214511
Alexander Khaetskii, Vladimir Juričič, Alexander V Balatsky
Thermal magnetic fluctuations of a ferroelectric quantum critical point
Journal of Physics: Condensed Matter. 2021; 33/4: 04LT. https://doi.org/10.1088/1361-648X/abbb0f
R. Matthias Geilhufe
Quantum Buckling in Metal–Organic Framework Materials
Nano Letters. 2021; 21, 24: 10341–10345. https://doi.org/10.1021/acs.nanolett.1c03579
Geilhufe, R.M., Olsthoorn, B. & Balatsky, A.V.
Shifting computational boundaries for complex organic materials.
Nature Physics. 2021; 17: 152–154 . https://doi.org/10.1038/s41567-020-01135-6
Gayanath W. Fernando; R. Matthias Geilhufe; Adil-Gerai Kussow; W. Wasanthi P. De Silva
Driven emergent phases in small interacting condensed-matter systems
Europhysics Letters. 2021; 134: 37004. https://doi.org/10.1209/0295-5075/134/37004
Long Liang, P. O. Sukhachov, and A. V. Balatsky
Axial Magnetoelectric Effect in Dirac Semimetals.
Physical Review Letters. 2021; 126: 247202. https://doi.org/10.1103/PhysRevLett.126.247202
R. Matthias Geilhufe; Vladimir Juricic; Stefano Bonetti; Jian-Xin Zhu; Alexander V. Balatsky
Dynamically induced magnetism in KTaO 3
Physical Review Research. 2021; 3: L022011. https://doi.org/10.1103/PhysRevResearch.3.L022011
Henrik Schou Røising; Benjo Fraser; Sinéad M. Griffin; Sumanta Bandyopadhyay; Aditi Mahabir; et al.
Axion-matter coupling in multiferroics
Physical Review Research. 2021; 3: 033236. https://doi.org/10.1103/PhysRevResearch.3.033236
Jonas A. Krieger, Anna Pertsova, Sean R. Giblin, Max Döbeli, Thomas Prokscha, et al.
Proximity-Induced Odd-Frequency Superconductivity in a Topological Insulator
Physical Review Letters. 2020; 125: 026802. https://doi.org/10.1103/PhysRevLett.125.026802
R. Matthias Geilhufe, Felix Kahlhoefer, and Martin Wolfgang Winkler
Dirac materials for sub-MeV dark matter detection: New targets and improved formalism
Physical Review D. 2020; 101: 055005. https://doi.org/10.1103/PhysRevD.101.055005
Dushko Kuzmanovski, Rubén Seoane Souto, and Alexander V. Balatsky
Odd-frequency superconductivity near a magnetic impurity in a conventional superconductor
Physical Review B. 2020; 101: 094505. https://doi.org/10.1103/PhysRevB.101.094505
Rubén Seoane Souto, Dushko Kuzmanovski, and Alexander V. Balatsky
Signatures of odd-frequency pairing in the Josephson junction current noise
Physical Review Research. 2020; 2: 043193. https://doi.org/10.1103/PhysRevResearch.2.043193
P. O. Sukhachov and H. Rostam
Acoustogalvanic Effect in Dirac and Weyl Semimetals
Physical Review Letters. 2020; 124: 126602. https://doi.org/10.1103/PhysRevLett.124.126602
Olsthoorn, Bart; Balatsky, Alexander V.
Mass fluctuations and absorption rates in dark-matter sensors based on Dirac materials
Physical Review B. 2020; 101: 045120. https://doi.org/10.1103/PhysRevB.101.045120
Bart Olsthoorn; Johan Hellsvik; Alexander V. Balatsky
Finding hidden order in spin models with persistent homology
Physical Review Research.2020; 2: 043308. https://doi.org/10.1103/PhysRevResearch.2.043308
Sumanta Bandyopadhyay; Gerardo Ortiz; Zohar Nussinov; Alexander Seidel
Local Two-Body Parent Hamiltonians for the Entire Jain Sequence.
Physical Review Letters. 2020; 124: 196803. https://doi.org/10.1103/PhysRevLett.124.196803
P. O. Sukhachov and A. V. Balatsky
Spectroscopic and optical response of odd-frequency superconductors
Physical Review B. 2019; 100: 134516. https://doi.org/10.1103/PhysRevB.100.134516
Jacob Linder and Alexander V. Balatsky
Odd-frequency superconductivity
Reviews of Modern Physics. 2019; 91: 045005. https://doi.org/10.1103/RevModPhys.91.045005