Publications 2018

Publications 2018

Heterogeneous Catalytic Reactor for Hydrogen Production from Formic Acid and Its Use in Polymer Electrolyte Fuel Cells I. Yuranov, N. Autissier, K. Sordakis, A.F. Dalebrook, M. Grasemann, V. Orava, P. Cendula, L. Gubler, G. Laurenczy
ACS Sustainable Chemistry & Engineering 6 (5), 6635-6643 (2018).
DOI: 10.1021/acssuschemeng.8b00423OG-5421
 
Fe-​Based O2-​Reduction Catalysts Synthesized Using Na2CO3 as a Pore-​Inducing Agent K. Ebner, J. Herranz, V.A. Saveleva, B.-J. Kim, S. Henning, M. Demicheli, F. Krumeich, M. Nachtegaal, T.J. Schmidt
ACS Appl. Energy Mater. (2019).
DOI: 10.1021/acsaem.8b02036OG-5423
 
Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2, and CO2 T. Binninger, B. Pribyl, A. Pătru, P. Ruettimann, S. Bjelić, T.J. Schmidt
J. Mass Spectrom. 53, 1214-1221 (2018).
DOI: 10.1002/jms.4299OG-5423
 
Biowaste lignin-based carbonaceous materials as anodes for Na-Ion batteries C. Marino, J. Cabanero, M. Povia, C. Villevieille
J. Electrochem. Soc. 165 (7), A1400-A1408 (2018).
DOI: 10.1149/2.0681807jesOG-5411 , OG-5423
 
Impact of water-based binder on the electrochemical performance of P2-Na0.67Mn0.6Fe0.25Co0.15O2 electrodes in Na-Ion batteries C. Marino, E. Marelli, S. Park, C. Villevieille
Batteries 4 (4), 66 (2018).
DOI: 10.3390/batteries4040066OG-5411
 
Co-Free P2–Na0.67Mn0.6Fe0.25Al0.15O2 as promising cathode material for Sodium-Ion batteries E. Marelli, C. Villevieille, S. Park, N. Hérault, C. Marino
ACS Applied Energy Materials 1 (11), 5960-5967 (2018).
DOI: 10.1021/acsaem.8b01015OG-5411
 
Operando X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni1−xFexOy nanoparticles D.F. Abbott, E. Fabbri, M. Borlaf, F. Bozza, R. Schaublin, M. Nachtegaal, T. Graule, T.J. Schmidt
J. Mater. Chem. A 6, 24534-24549 (2018).
DOI: 10.1039/C8TA09336AOG-5423
 
Oxygen evolution reaction - The enigma in water electrolysis E. Fabbri, T.J. Schmidt
ACS Catal. 8, 9765-9774 (2018).
DOI: 10.1021/acscatal.8b02712OG-5423
 
Scaling the graft length and graft density of irradiation-grafted copolymers G. Nagy, V. Sproll, U. Gasser, T.J. Schmidt, L. Gubler, S. Balog
Macromol. Chem. Phys. 1800311 (2018).
DOI: 10.1002/macp.201800311OG-5421
 
Lanthanum manganite-based air electrode catalysts and their application to lithium-air batteries: Effects of carbon support oxidation M. Saito, Y. Tachikawa, T. Fujinami, K. Mikami, Y. Hayashi, H. Shiroishi, D. Streich, E.J. Berg, P. Novák
Electrochemistry 6 (5), 265-271 (2018).
DOI: 10.5796/electrochemistry.18-00034OG-5410 , OG-5412
 
Highly active nanoperovskite catalysts for oxygen evolution reaction: Insights into activity and stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δ B-J. Kim, X. Cheng, D.F. Abbott, E. Fabbri, F. Bozza, T. Graule, I.E. Castelli, L. Wiles, N. Danilovic, K.E. Ayers, N. Marzari, T.J. Schmidt
Adv. Funct. Mater. 1804355 (2018).
DOI: 10.1002/adfm.201804355OG-5423
 
Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis F.O. Oldenburg, M. Bon, D. Perego, D. Polino, D. Laino, L. Gubler, T.J. Schmidt
Phys. Chem. Chem. Phys. 20, 23664-23673 (2018).
DOI: 10.1039/c8cp04517hOG-5421
 
Polymer electrolyte materials for electrochemical energy devices L. Gubler
Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ISBN 9780124095472 (2018).
DOI: 10.1016/B978-0-12-409547-2.14285-4OG-5421
 
Communication — Contribution of catalyst layer proton transport resistance to voltage loss in polymer electrolyte water electrolyzers U. Babic, T.J. Schmidt, L. Gubler
J. Electrochem. Soc. 165 (15), J3016-J3018 (2018).
DOI: 10.1149/2.0031815jesOG-5421
 
Prospects for durable hydrocarbon-based fuel cell membranes L. Gubler, T. Nauser, F.D. Coms, Y.-H. Lai, C.S. Gittleman
J. Electrochem. Soc. 165 (6), F3100-F3103 (2018).
DOI: 10.1149/2.0131806jesOG-5421
 
_In situ_ and operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes E. Flores, P. Novák, E.J. Berg
Front. Energ. Res. 6 (82), (2018).
DOI: 10.3389/fenrg.2018.00082OG-5410 , OG-5412
 
A cylindrical cell for operando neutron diffraction of Li-Ion battery electrode materials L. Vitoux, M. Reichardt, S. Sallard, P. Novák, D. Sheptyakov, C. Villevieille
Front. Energ. Res. 6 (76), (2018).
DOI: 10.3389/fenrg.2018.00076OG-5410 , OG-5411
 
The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells J. Halter, S. Thomas, S.K. Kaer, T.J. Schmidt, F.N. Büchi
J. Power Sources 399, 151-156 (2018).
DOI: 10.1016/j.jpowsour.2018.07.090OG-5422
 
Phosphorus anionic redox activity revealed by operando P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries S. Schmidt, S. Sallard, C. Borca. T. Huthwelker, P. Novák, C. Villevieille
Chem. Commun. 54, 4939-4942 (2018).
DOI: 10.1039/C8CC01350KOG-5410 , OG-5411
 
Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy E. Flores, N. Vonrüti, P. Novák, U. Aschauer, E.J. Berg
Chem. Mater. 30, 4694−4703 (2018).
DOI: 10.1021/acs.chemmater.8b01384OG-5410 , OG-5412
 
Determination of water evaporation rates in gas diffusion layers of fuel cells S. Lal, A. Lamibrac, J. Eller, F.N. Büchi
J. Electrochem. Soc. 165 (9), F652-F661 (2018).
DOI: 10.1149/2.0831809jesOG-5422
 
Novel concept for evaporative cooling of fuel cells: An experimental study based on neutron imaging M. Cochet, A. Forner‐Cuenca, V. Manzi, M. Siegwart, D. Scheuble, P. Boillat
Fuel Cells tbd.
DOI: 10.1002/fuce.201700232OG-5424
 
Switch of the charge storage mechanism of LixNi0.80Co0.15Al0.05O2 at overdischarge conditions R. Robert, P. Novák
Chem. Mater. 30, 1907−1911 (2018).
DOI: 10.1021/acs.chemmater.7b04784OG-5410 , OG-5414
 
Comparing the kinetic activation energy of the oxygen evolution and reduction reactions M. Suermann, T.J. Schmidt, F.N. Büchi
Electrochim. Acta 281, 466-471 (2018).
DOI: 10.1016/j.electacta.2018.05.150OG-5422
 
Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy X. Wu, C. Villevieille, P. Novák, M. El Kazzi
Phys. Chem. Chem. Phys. 20, 11123-11129 (2018).
DOI: 10.1039/C8CP01213JOG-5410 , OG-5411 , OG-5414
 
Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode G. Ferraresi, M. El Kazzi, L. Czornomaz, C.-L. Tsai, S. Uhlenbruck, C. Villevieille
ACS Energy Lett. 3, 1006-1012 (2018).
DOI: 10.1021/acsenergylett.8b00264OG-5410 , OG-5411 , OG-5414
 
SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions G. Ferraresi, C. Villevieille, I. Czekaj, M. Horisberger, P. Novák, M. El Kazzi
ACS Appl. Mater. & Interfaces 10 (10), 8712-8720 (2018).
DOI: 10.1021/acsami.7b19481OG-5410 , OG-5411 , OG-5414
 
Polybenzimidazole fuel cell technology: Theory, performance, and applications A.T. Pingitore, M. Molleo, T.J. Schmidt, B.C. Benicewicz
Encyclopedia of Sustainability Science and Technology, Springer New York, 1-38 (2018).
DOI: 10.1007/978-1-4939-2493-6_143-3OG-5423
 
Graphite as cointercalation electrode for sodium‐ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI) M. Goktas, C. Bolli, E.J. Berg, P. Novák, K. Pollok, F. Langenhorst, M. v. Roeder, O. Lenchuk, D. Mollenhauer, P. Adelhelm
Adv. Energy Mater. 1702724 (2018).
DOI: 10.1002/aenm.201702724OG-5410 , OG-5412
 
Do imaging techniques add real value to the development of better post-Li-ion batteries? J. Conder, C. Marino, P. Novák, C. Villevieille
J. Mater. Chem. A 6, 3304-3327 (2018).
DOI: 10.1039/C7TA10622JOG-5410 , OG-5411
 
Solving the puzzle of Li4Ti5O12 surface reactivity in aprotic electrolytes in Li-ion batteries by nanoscale XPEEM spectromicroscopy D. Leanza, C.A.F. Vaz, I. Czekaj, P. Novák, M. El Kazzi
J. Mater. Chem. A 6, 3534-3542 (2018).
DOI: 10.1039/C7TA09673AOG-5410
 
Tomographic analysis and modeling of polymer electrolyte fuel cell unsupported catalyst layers H. Ishikawa, S. Henning, J. Herranz, A. Eychmüller, M. Uchida, T.J. Schmidt
J. Eletrochem. Soc. 165 (2), F7-F16 (2018).
DOI: 10.1149/2.0371802jesOG-5423
 
Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes V. Sproll, T.J. Schmidt, L. Gubler
Rad.Phys.Chem. 144, 276-279 (2018).
DOI: 10.1016/j.radphyschem.2017.08.025OG-5421
 
Multiple redox couples cathode material for Li-ion battery: Lithium chromium phosphate M. Reichardt, S. Sallard, C. Marino, D. Sheptyakov, P. Novák, C. Villevieille
J. Energy Storage 15, 266-273 (2018).
DOI: 10.1016/j.est.2017.12.001OG-5410 , OG-5411
 
Influence of Carbon Material Properties on Activity and Stability of the Negative Electrode in Vanadium Redox Flow Batteries: A Model Electrode Study S.M. Taylor, A. Patru, D. Perego, E. Fabbri, T.J. Schmidt
ACS Appl. Energy Mater. 1, 1166-1174 (2018).
DOI: 10.1021/acsaem.7b00273OG-5423
 
Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt​/SnO2 Electrocatalysts A. Rabis, T. Binninger, E. Fabbri, T.J. Schmidt
J. Phys. Chem. C 122, 4739-4746 (2018).
DOI: 10.1021/acs.jpcc.7b09976OG-5423
 
Unsupported Pt3Ni Aerogels as Corrosion Resistant PEFC Anode Catalysts under Gross Fuel Starvation Conditions S. Henning, R. Shimizu, J. Herranz, L. Kuhn, A. Eychmuller, M. Uchida, K. Kakinuma, T.J. Schmidt
J. Electrochem. Soc. 165, F3001-F3006 (2018).
DOI: 10.1149/2.0531802jesOG-5423
 
Combining SAXS and XAS to study the operando degradation of carbon-​supported Pt-​nanoparticle fuel cell catalysts M. Povia, J. Herranz, T. Binninger, M. Nachtegaal, A. Diaz, J. Kohlbrecher, D.F. Abbott, B-J. Kim, T.J. Schmidt
ACS Catal. 8, 7000-7015 (2018).
DOI: 10.1021/acscatal.8b01321OG-5423