In general, magnetism and superconductivity are antagonistic to each other. However, there are several families of superconductors in which superconductivity coexists with magnetism, and a few examples are known where the superconductivity itself induces spontaneous magnetism. The best known of these compounds are Sr2RuO4 and some non-centrosymmetric superconductors. Here, we report the finding of a narrow dome of an 𝑠+𝑖𝑠′ superconducting phase with apparent broken time-reversal symmetry (BTRS) inside the broad s-wave superconducting region of the centrosymmetric multiband superconductor Ba1−xKxFe2As2 (0.7 ≲ x ≲ 0.85). We observe spontaneous magnetic fields inside this dome using the muon spin relaxation (μSR) technique. Furthermore, our detailed specific heat study reveals that the BTRS dome appears very close to a change in the topology of the Fermi surface. With this, we experimentally demonstrate the likely emergence of a novel quantum state due to topological changes of the electronic system.
Facility: SμS
Reference: V. Grinenko et al, Nature Physics, adv. online publication (2020)
Read full article: here