SINQ – Swiss Spallation Neutron Source

Header 2

Neutron scattering techniques are highly versatile and powerful tools for studying the structure and dynamics of condensed matter. A wide scope of problems, ranging from fundamental to solid state physics and chemistry, and from materials science to biology, medicine and environmental science, can be investigated with neutrons. In addition to scattering, non-diffractive methods like imaging techniques allows for non-destructive inspection of materials and components, providing information on their internal structure, composition, and integrity with growing relevance also for industrial applications.

The spallation neutron source SINQ is a continuous source - the first and only one of its kind in the world - with a flux of about 1014 n/cm2/s. Beside thermal neutrons, a cold moderator of liquid deuterium (cold source) slows neutrons down and shifts their spectrum to lower energies. These neutrons have proved to be particularly valuable in materials research and in the investigation of biological substances. 

SINQ operates as a user facility, meaning that scientists and research groups from around the world can apply for beamtime to conduct experiments using its various neutron instruments.

At the latest deadline in November 2024 more than 230 new proposals were submitted for the call I-25. The review process is ongoing and the results of the evaluation and of the panel meetings may be expected by the end of February 2025.  

The next deadline for the submission of proposals for SINQ will then be 15 May 2025 for the beam time period II-25 between 01 September and 23 December 2025. 

Halloran et al

Connection between f-electron correlations and magnetic excitations in UTe2

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe2 is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry Y and T points and disperse along the crystallographic b-axis. In applied magnetic fields ...

Sarenac et al

Small-angle scattering interferometry with neutron orbital angular momentum states

Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. 

However, ....

User Office

Paul Scherrer Institute
bldg WBBC
Forschungsstrasse 111
CH-5232 Villigen-PSI

+41 56 310 46 66
useroffice@psi.ch

User Office
Provides all information about user access to the PSI Large Research Facilities

 

DUO Login
Direct link to the Digital User Office