Vertex reconstruction
The useable rate of incoming muons can be increased by implementing a so-called vertex reconstruction technique. The continuous muon beams of SµS require a limitation of the incoming-muon rate to ~40 kcps to keep pileup events at a tolerable level. In a traditional µSR setup, an incoming muon is registered in a ‘muon counter’, which opens a data gate of typically 10-µs length. A valid µSR event is given by the detection of the decay positron in one of the scintillators of the positron spectrometer. In case of a pileup event, where a second muon or a second positron is observed, it is not possible to determine which muon belongs to which positron, and the event is discarded. At a beam rate of 40 kcps, the accepted rate of 18 kcps is the maximum for a data gate of 10 µs. However, when the position of the incoming muon can be detected and the emitted positron tracked, each decay positron can be assigned unambiguously to its parent muon by vertex reconstruction. In this way, at least ten times higher incoming-muon rates would become feasible, thus enabling new kinds of µSR applications by measuring very weak effects on µSR precession frequencies or depolarization rates, or to measure several samples simultaneously. With modern silicon-based pixel detectors of 50-µm thicknesses, the vertex inside the µSR instrument can be determined within about 1 mm. In the course of the High Intensity Muon Beam (HIMB) study, initiated by LTP to deliver a muon beam with 1010/s intensity for new particle physics and µSR applications, members of LTP in collaboration with LMU have started a feasibility study of such a vertex reconstruction. The detection system is based on the planned silicon pixel detectors for the upcoming Mu3e experiment at PSI, which is being developed by the University of Heidelberg in collaboration with LTP.
Books and reviews
- C. F. G. Delaney, E. C. Finch, Radiation Detectors: Physical Principles and Applications , Clarendon Press, Oxford, 1992.
- Glenn F. Knoll, Radiation Detection and Measurement , 3rd ed., Wiley, New York, 1999.
- G. Lutz, A. S. Schwarz, "Silicon devices for charged-particle track and vertex detection", Annu. Rev. Nucl. Part. Sci. , 45 (1995) 295-335.
- Alan M. Litke, Andreas S. Schwarz, "The Silicon Microstrip Detector", Sci. Am. , May 1995, 56-61.
- Gerhard Lutz, Semiconductor Radiation Detectors: Device Physics (Accelerator Physics) , Springer Verlag, Berlin, 1999.
- A. S. Schwarz, "Heavy Flavour Physics at Colliders with Silicon Strip Vertex Detectors", Phys. Rep. , 238 (1994) 1-133.
- Simon M. Sze, Semiconductor Devices: Physics and Technology , Wiley, New York, 1985.
- Nicholas Tsoulfanidis, Measurement and Detection of Radiation , 2nd ed., Taylor & Francis, London, 1995.
Scintillating fibers
- W. Baldini, D. Bettoni, R. Calabrese, G. Cibinetto, E. Luppi, R. Mussa, M. Negrini, and G. Stancari, "The New Scintillating Fiber Detector of E835 at Fermilab", IEEE Trans. Nucl. Sci. , 48 (2001) 1122-1126.
- C. D´Ambrosio, T. Gys, H. Leutz, and D. Puertolas, "Particle Tracking with Scintillating Fibers", IEEE Trans. Nucl. Sci. , 43 (1996) 2115-2127.
- C.P. Datema, L-J. Meng, and D. Ramsden, "The Detection of Minimum Ionising Particles with Scintillating Fibres using Multi-pixel Hybrid Photodiodes", IEEE Trans. Nucl. Sci. , 45 (1998) 338-342.
- S. Horikawa, I. Daito, A. Gorin, T. Hasegawa, N. Horikawa, T. Iwata, K. Kuroda, I. Manuilov, T. Matsuda, Y. Miyachi, A. Riazantsev, A. Sidorov, N. Takabayashi, T. Toeda, "Development of a scintillating-fibre detector with position-sensitive photomultipliers for high-rate experiments", Nucl. Instr. and Meth. A , 516 (2004) 34-49.
- H. Leutz, "Scintillating fibers", Nucl. Instr. and Meth. A , 364 (1995) 422-448.
- D. Koltick, Yu. Pischalnikov, M. Atac, T. Wunderlich, "A Compact VLPC Photon Transducer System", IEEE Trans. Nucl. Sci. , 44 (1997) 729-733.
- L. R. MacDonald, M. P. Tomai, C. S. Levin, J. Park, M. Atac, D. B. Cline and E. J. Hoffman, "Investigation of the Physical Aspects of Beta Imaging Probes Using Scintillating Fibers and Visible Light Photon Counters", IEEE Trans. Nucl. Sci. , 42 (1995) 1351-1357.
- R. C. Ruchti, "The use of scintillating fibers for charged-particle tracking", Annu. Rev. Nucl. Part. Sci. , 46 (1996) 281-319.
- B. Seitz, "The HERMES recoil detector: a combined silicon strip and scintillating fibre detector for tracking and particle identification", Nucl. Instr. and Meth. A , 535 (2004) 538-541.
Silicon detectors
- G. Hall, "Semiconductor particle tracking detectors", Rep. Prog. Phys. , 57 (1994) 481-531.
- R. Higgons, "Position Sensitive Detector Technologies at CERN", CERN Rep. 2004.
- M. Krammer, "The silicon sensors for the Inner Tracker of the Compact Muon Solenoid experiment", Nucl. Instr. and Meth. A , 531 (2004) 238-245.
- G. Lindström, M. Moll, and E. Fretwurst, "Radiation hardness of silicon detectors - a challenge from high-energy physics", Nucl. Instr. and Meth. A , 426 (1999) 1-15.
- S. Manolopoulos, M. French, B. Gannon, P. King, J. Lord, A. Marsh, N. Rhodes, E . Schooneveld, R. Stephenson, , T. Simmons, "A feasibility study on the upgrade of the ISIS µSR spectrometers", RAL-TR-2004-13.
- H. Park, "Research and development of silicon detectors for Future e+e- linear colliders", Nucl. Instr. and Meth. A , 541 (2005) 427-433.
- H. F.-W. Sadrozinski, "Applications of Silicon Detectors", IEEE Trans. Nucl. Sci. , 48 (2001) 933-940.
- M. Turala, "Silicon tracking detectors - historical overview", Nucl. Instr. and Meth. A , 541 (2005) 1-14.
- U. Wahla, J. G. Correia, A. Czermak, S. G. Jahne, P. Jalochad, J. G. Marques, A. Rudge, F. Schopper, J. C. Soares, A. Vantomme, P. Weilhammer, the ISOLDE collaboration, "Position-sensitive Si pad detectors for electron emission channeling experiments", Nucl. Instr. and Meth. A , 524 (2004) 245-256.
- P. Weilhammer, "Overview: silicon vertex detectors and trackers", Nucl. Instr. and Meth. A , 453 (2000) 60-70.
- N. Wermes, "Pixel detectors for particle physics and imaging applications", Nucl. Instr. and Meth. A , 512 (2003) 277-288.
- N. Wermes, "Pixel detectors for tracking and their spin-off in imaging applications", Nucl. Instr. and Meth. A , 541 (2005) 150-165.
Technical issues
- R. Horisberger, "Readout architectures for Pixel detectors", Nucl. Instr. and Meth. A , 465 (2001) 148-152.
- R. Mankel, "Pattern recognition and event reconstruction in particle physics experiments", Rep. Prog. Phys. , 67 (2004) 553-622.
- P. O'Connor, "Analog front ends for highly segmented detectors", Nucl. Instr. and Meth. A , 522 (2004) 126-130.
- M. Olcese, "Mechanics and cooling of pixel detectors", Nucl. Instr. and Meth. A , 465 (2001) 51-59.
- A. Pullia, W. F. J. Müller, C. Boiano, and R. Bassini, "Resistive or Capacitive Charge-Division Readout for Position-Sensitive Detectors", IEEE Trans. Nucl. Sci. , 49 (2002) 3269-3277.
Various
- H. Bichsel, D. E. Groom, and S. R. Klein, "Passage of Particles through Matter", in S. Eidelman et al., Phys. Lett. B , 592 (2004) 1.
- P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, S. Smirnov, "Silicon photomultiplier and its possible applications", Nucl. Instr. and Meth. A , 504 (2003) 48-52.
- C. J. S. Damerell, "Concluding Remarks from the Vertex Detector Workshop", Nucl. Instr. and Meth. A , 501 (2003) 308-316.
- C. J. S. Damerell, "CCD-based vertex detectors", Nucl. Instr. and Meth. A , 541 (2005) 178-188.
- A. Del Guerra, N. Belcari, A. Motta, G. Di Domenico, N. Sabba, and G. Zavattini, "Latest achievements in PET techniques", Nucl. Instr. and Meth. A , 513 (2003) 13-18.
- S. Eidelman et al., "Particle Detectors", Phys. Lett. B , 592 (2004) 1.
Manufacturers
- AMS - Austria Micro Systems - Front-end electronics for radiation detectors.
- Bicron - Scintillators, sci-fi, detector assemblies (Saint Gobain).
- CAEN - Nuclear physics and microelectronics.
- Canberra - Nuclear physics and many other aspects of detectors.
- CiS - Institut für Mikrosensorik - Silicon detectors.
- CSEM - Centre Suisse d'Electronique et de Microtechnique - Silicon detectors.
- Hamamatsu - Photonics: PMTs, APDs, and much more.
- IDEAS - Electronic front-ends for radiation detection.
- Kuraray - Mainly scintillating fibers.
- Micron - Micron Semiconductor - Silicon detectors.
- Silena - Nuclear physics.
- SINTEF - Senter for Industriforskning (Oslo) - Microelectronics, front-ends, detectors.
- VTT - Detectors and microelectronics.