Latest News

Here you find current and previous news from the NUM division. For scientific highlights, please have a look here.

Gupta et al

Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor

The recently discovered kagome superconductor CsV3Sb5 (Tc ≃ 2.5 K) has been found to host charge order as well as a non-trivial band topology, encompassing multiple Dirac points and probable surface states. Such a complex and phenomenologically rich system is, therefore, an ideal playground for observing unusual electronic phases. Here, we report anisotropic superconducting properties of CsV3Sb5 by means of transverse-field muon spin rotation (μSR) experiments.

 

John et al

Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing

Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions.

 

Wang et al

Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4

Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic “kinks”—sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment.

 

Takagi et al

Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound

Magnetic skyrmions are topologically stable swirling spin textures with particle-like char- acter, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments.

Shang et al

Spin-triplet superconductivity in Weyl nodal-line semimetals

Topological semimetals are three dimensional materials with symmetry-protected massless bulk excitations. As a special case, Weyl nodal-line semimetals are realized in materials having either no inversion or broken time-reversal symmetry and feature bulk nodal lines. The 111-family, including LaNiSi, LaPtSi and LaPtGe materials (all lacking inversion symmetry), belongs to this class. Here, by combining muon-spin rotation and relaxation with thermodynamic measurements, we find that these materials exhibit a fully- gapped superconducting ground state, while spontaneously breaking time-reversal symmetry at the superconducting transition.

 

Bahrami et al

First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice

Recent observations of novel spin-orbit coupled states have generated interest in 4d/5d transition metal systems. A prime example is the Jeff = 1/2 state in iridate materials and α-RuCl that drives Kitaev interactions. Here, by tuning the competition between spin-orbit interaction (λSOC) and trigonal crystal field (ΔT), we restructure the spin-orbital wave functions into a previously unobserved μ=1/2 state that drives Ising interactions.

 

Aparisi et al

The Running Bottom Quark Mass and the Higgs Boson

We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: mb (mH) = 2.6 +0.36 -0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory.

 

Antiprotonic Helium

Antiprotons in superfluid helium: a new way for sensitive measurements of antimatter

Scientists, publishing in Nature, have found that a hybrid antimatter-matter atom behaves in an unexpected way when submerged in superfluid helium.

Saccone et al

Direct observation of a dynamical glass transition in a nanomagnetic artificial Hopfield network

Spin glasses, generally defined as disordered systems with randomized competing interactions, are a widely investigated complex system. Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass within the framework of artificial spin ice systems. Here we present the experimental realization of an artificial spin glass consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an interaction network that replicates the aspects of a Hopfield neural network.

 

Aldo Antognini

Aldo Antognini Adjunct Professor at ETHZ

Aldo Antognini, currently lecturer and senior scientist at both ETH Zurich and the Laboratory for Particle Physics at NUM/PSI was awarded the title of Adjunct Professor at ETH Zurich.

Prof. Dr. Marc Janoschek

Waves on circular paths

Just as electrons flow through an electrical conductor, magnetic excitations can travel through certain materials. Such excitations, known in physics as "magnons" in analogy to the electron, could transport information much more easily than electrical conductors. An international research team has now made an important discovery on the way towards such components, which could be highly energy-efficient and considerably smaller.

Naumov et al

Optical Setup for a Piston-Cylinder Pressure Cell: A Two-Volume Approach

Measurement of the absolute value of the applied pressure in high-pressure muon and neutron experiments is a complicated task. It often requires the presence of a calibration material inside the sample volume, and could also cause additional time to obtain the response of the calibrant. Here we describe the use of optical calibrants for precise determination of the pressure value inside the piston-cylinder clamp cells.

 

Mazzone et al

Antiferromagnetic excitonic insulator state in Sr3Ir2O7

Excitonic insulators are usually considered to form via the condensation of a soft charge mode of bound electron-hole pairs. This, however, presumes that the soft exciton is of spin-singlet character. Early theoretical considerations have also predicted a very distinct scenario, in which the condensation of magnetic excitons results in an antiferromagnetic excitonic insulator state. Here we report resonant inelastic x-ray scattering (RIXS) measurements of Sr3Ir2O7.

 

Kagome lattice and orbital currents

New insight into unconventional superconductivity

Signatures for a novel electronic phase that enables charge to flow spontaneously in loops have been observed in a kagome superconductor. The findings are published today in Nature.

Hillier et al

Muon spin spectroscopy

Muons are particles with a spin of 1⁄2 that can be implanted into a wide range of condensed matter materials to act as a local probe of the surrounding atomic environment. Measurement of the muon’s precession and relaxation provides an insight into how it interacts with its local environment. From this, unique information is obtained about the static and dynamic properties of the material of interest ...

 

25 years SINQ

Celebrating 25 years of SINQ

On January 17th, 2022, we celebrated the 25th anniversary of the inauguration of the Swiss Spallation Neutron Source SINQ. Today, SINQ is firmly embedded in the European research landscape and has established itself as an important center for neutron research.

Reschke et al npj

Confirming the trilinear form of the optical magnetoelectric effect in the polar honeycomb antiferromagnet Co2Mo3O8

Magnetoelectric phenomena are intimately linked to relativistic effects and also require the material to break spatial inversion symmetry and time-reversal invariance. Magnetoelectric coupling can substantially affect light–matter interaction and lead to non-reciprocal light propagation. Here, we confirm on a fully experimental basis, without invoking either symmetry-based or material-specific assumptions, that the optical magnetoelectric effect in materials with non-parallel magnetization (M) and electric polarization (P) generates a trilinear term in the refractive index...

 

Ohayon et al

Precision Measurement of the Lamb Shift in Muonium

We report a new measurement of the n=2 Lamb shift in Muonium. Our result of 1047.2(2.3)stat(1.1)syst  MHz comprises an order of magnitude improvement upon the previous best measurement. This value matches ...

 

dmcdet1.jpg

High-performance detector for DMC enters hot commissioning phase

The cold neutron diffractometer DMC at SINQ is currently undergoing major upgrades. After the recent replacement of the cold neutron guide as part of the SINQ upgrade program, the installation of the new high-performance 2D position-sensitive detector successfully entered the hot commissioning phase.

Belopolski et al

Signatures of Weyl Fermion Annihilation in a Correlated Kagome Magnet

The manipulation of topological states in quantum matter is an essential pursuit of fundamental physics and next-generation quantum technology. Here we report the magnetic manipulation of Weyl fermions in the kagome spin-orbit semimetal Co3Sn2S2, observed by high-resolution photoemission spectroscopy. We demonstrate the exchange collapse of spin-orbit-gapped ferromagnetic Weyl loops into paramagnetic Dirac loops under suppression of the magnetic order.

 

Estia ESS

The world’s most powerful neutron microscope

Researchers from the Paul Scherrer Institute PSI in Villigen have delivered a key component for the ESTIA reflectometer at the European Spallation Source ESS based in Lund, Sweden. When it comes into service in 2026, ESS will be the world’s most powerful neutron source. Switzerland is making a vital contribution to the project. Scientists from across the globe will use ESS instruments to study processes and structures on the atomic scale, advancing materials research to a new level.

Lattanzi et al

Amyloid β 42 fibril structure based on small-angle scattering

Alzheimers disease is one of the major global health challenges. Neuronal cell dysfunction and death are connected to the self-assembly of the amyloid β peptide (Aβ42) into oligomeric and fibrillar aggregates. The fibril surface can catalyze the formation of toxic oligomers via secondary nucleation.

 

Das et al

Unconventional Pressure Dependence of the Superfluid Density in the Nodeless Topological Superconductor α-PdBi2

We investigated the superconducting properties of the topological superconductor α-PdBi2 at ambient and external pressures up to 1.77 GPa using muon spin rotation experiments. The ambient pressure measurements evince a fully gapped s-wave superconducting state in the bulk of the specimen. Alternating current magnetic susceptibility and muon spin rotation measurements manifest a continuous suppression of Tc with increasing pressure.

 

Meseguer et al

Coexistence of structural and magnetic phases in van der Waals magnet CrI3

CrI3 has raised as an important system to the emergent field of two-dimensional van der Waals magnetic materials. However, it is still unclear why CrI3 which has a ferromagnetic rhombohedral structure in bulk, changed to anti-ferromagnetic monoclinic at thin layers. Here we show that this behaviour is due to the coexistence of both monoclinic and rhombohedral crystal phases followed by three magnetic transitions at TC1 = 61 K, TC2 = 50 K and TC3 = 25 K.

 

Zivkivic et al

Magnetic Field Induced Quantum Spin Liquid in the Two Coupled Trillium Lattices of K2Ni2(SO4)3

Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K2Ni2(SO4)3 forming a three-dimensional network of Ni2+ spins.

 

Fittipaldi et al

Unveiling unconventional magnetism at the surface of Sr2RuO4

Materials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite Sr2RuO4, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr2RuO4 is still ongoing, a deeper understanding of the Sr2RuO4 normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr2RuO4 in its normal state.