We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y2CuTiO6. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θCW) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.
Facility: SμS
Reference: S. Kundu et al, Physical Review Letters 125, 117206 (2020)
Read full article: here