We report microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca3Ir4Sn13 and Sr3Ir4Sn13 cubic compounds, which are members of the (Ca1−xSrx)3Ir4Sn13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). We find a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈1.6 GPa, giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca1−xSrx)3Ir4Sn13 system, the dependence of the effective superfluid density on the critical temperature puts this compound in the 'Uemura' plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multiband structure can also display characteristics of unconventional superconductors.
Reference: P.K. Biswas et al, Physical Review B 92, 195122 (2015)
Read full article: here