Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics. A charge- density-wave-like order with orbital currents has been pro- posed for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 ×2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 ×2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.
Reference: Y.X. Jiang et al, Nature Materials, adv. online publication (2021)
Read full article: here