As exemplified by the growing interest in the quantum anomalous Hall effect, the research on topology as an organizing principle of quantum matter is greatly enriched from the interplay with magnetism. In this vein, we present a combined electrical and thermoelectrical transport study on the magnetic Weyl semimetal EuCd2As2. Unconventional contribution to the anomalous Hall and anomalous Nernst effects were observed both above and below the magnetic transition temperature of EuCd2As2, indicating the existence of significant Berry curvature. EuCd2As2 represents a rare case in which this unconventional transverse transport emerges both above and below the magnetic transition temperature in the same material. The transport properties evolve with temperature and field in the antiferromagnetic phase in a different manner than in the paramagnetic phase, suggesting different mechanisms to their origin. Our results indicate EuCd2As2 is a fertile playground for investigating the interplay between magnetism and topology, and potentially a plethora of topologically nontrivial phases rooted in this interplay.
Facility: SLS
Reference: Y. Xu et al, Physical Review Letters 126, 076602 (2021)
Read full article: here