Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

Interfaces of transition metal oxides are a fertile ground for new physics, often showing novel electronic and magnetic properties that do not exist in the bulk form of the material. A relatively little-explored direction in this field concerns the interfacial properties of multifunctional materials such as the magnetoelectric multiferroics. A prototypical family of such materials are the orthorhombic rare-earth manganites (REMnO3, RE=Tb, Lu, Y) in which a symmetry-breaking magnetic transition causes the direct coupling of antiferromagnetic (AFM) and ferroelectric properties. Here, we report a study of single-phase LuMnO3 thin films grown on YAlO3 substrates. Remarkably, our experiments show ferromagnetic and antiferromagnetic orders to coexist in the LuMnO3 thin film. The large moment ferromagnetism (≈1μB), which is absent in bulk samples, displays a magnetic moment distribution that is peaked at the substrate-film interface. This observation indicates strongly that the ferromagnetism arises as a consequence of the interfacial strain induced by the mismatch between the film and substrate crystal lattices. We further show that the strain-induced ferromagnetism and the symmetry-breaking antiferromagnetic order are coupled via an exchange field, which demonstrates strained REMnO3 thin films as promising candidate systems for new multifunctional devices.
Original Publication
J.S. White et al., Phys. Rev. Lett. 111, 037201 (2013)