Dr. Andrea Prota

Kurzbeschreibung
Scientist
Téléphone
Orc-ID
0000-0003-0875-5339
Institut Paul Scherrer PSI
Forschungsstrasse 111
5232 Villigen PSI
Suisse

We use X-Ray crystallography in combination with biochemical and biophysical methods to provide the molecular mechanisms of protein interactions implicated in the regulation of the microtubule cytoskeleton. The elucidation and further exploration of these interactions at atomic resolution are pivotal to both basic and applied research in this field, and have important implications for the treatment of cancer and neurodegenerative diseases.

Our research activities are dedicated to the structural analysis of tubulin interactions with microtubule-targeting agents (MTAs). MTAs like taxol efficiently block cell entry into mitosis and are among the most potent chemotherapeutic drugs used for the treatment of different types of cancers. Despite the importance of MTAs for medical and basic research applications, their molecular mechanisms of action often remain elusive. Using X-ray crystallography and cryo EM we study the mechanisms of action of diverse MTAs by determining their structures in complex with tubulin and microtubules to high resolution.

Our research portfolio further covers the structural analysis of tubulin-complexes with various modulatory proteins. As part of the EU-funded Innovative Training Network TubInTrain https://www.tubintrain.eu, we study the role of microtubules in neurotoxicity and neurodegenerative disorders. In particular, we investigate different strategies for tuning tubulin/MTs dynamics and interactions with selected proteins and ligands at the atomic level, aiming at providing new relevant indications for the future design of effective drugs or novel therapeutic interventions.


2019

Horizon 2020 MSCA-ITN EJD Grant TubInTrain (www.tubintrain.eu).

The TubInTrain network has participants from six European countries and encompasses ten academic groups and ten companies committed to creating an outstanding training program for thirteen early stage researchers (ESRs) to elucidate the mechanisms of neurodegeneration associated to microtubules structure and dynamics.

 

Andrea's tubtrain
  • Abel AC, Mühlethaler T, Dessin C, Schachtsiek T, Sammet B, Sharpe T, et al.
    Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop
    Journal of Biological Chemistry. 2024; 300(6): 107363 (10 pp.). https://doi.org/10.1016/j.jbc.2024.107363
    DORA PSI
  • Dessin C, Schachtsiek T, Voss J, Abel AC, Neumann B, Stammler HG, et al.
    Highly cytotoxic cryptophycin derivatives with modification in unit D for conjugation
    Angewandte Chemie International Edition. 2024: e202416210 (13 pp.). https://doi.org/10.1002/anie.202416210
    DORA PSI
  • Herman J, Vanstreels E, Bardiot D, Prota AE, Gaillard N, Gao LJ, et al.
    3-nitropyridine analogues as novel microtubule-targeting agents
    PLoS One. 2024; 19(11 November): e0307153. https://doi.org/10.1371/journal.pone.0307153
    DORA PSI
  • Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, et al.
    Modular synthesis of functional libraries by accelerated SuFEx click chemistry
    Chemical Science. 2024; 15: 3879-3892. https://doi.org/10.1039/d3sc05729a
    DORA PSI
  • Steinmetz MO, Prota AE
    Structure-based discovery and rational design of microtubule-targeting agents
    Current Opinion in Structural Biology. 2024; 87: 102845 (15 pp.). https://doi.org/10.1016/j.sbi.2024.102845
    DORA PSI
  • Boiarska Z, Pérez-Peña H, Abel A-C, Marzullo P, Álvarez-Bernad B, Bonato F, et al.
    Maytansinol functionalization: towards useful probes for studying microtubule dynamics
    Chemistry: A European Journal. 2023; 29(5): e202203431 (12 pp.). https://doi.org/10.1002/chem.202203431
    DORA PSI
  • Estévez-Gallego J, Álvarez-Bernad B, Pera B, Wullschleger C, Raes O, Menche D, et al.
    Chemical modulation of microtubule structure through the laulimalide/peloruside site
    Structure. 2023; 31(1): 88-99.e5. https://doi.org/10.1016/j.str.2022.11.006
    DORA PSI
  • Prota AE, Lucena-Agell D, Ma Y, Estevez-Gallego J, Li S, Bargsten K, et al.
    Structural insight into the stabilization of microtubules by taxanes
    eLife. 2023; 12: e84791 (35 pp.). https://doi.org/10.7554/elife.84791
    DORA PSI
  • Pérez-Peña H, Abel AC, Shevelev M, Prota AE, Pieraccini S, Horvath D
    Computational approaches to the rational design of tubulin-targeting agents
    Biomolecules. 2023; 13(2): 285 (35 pp.). https://doi.org/10.3390/biom13020285
    DORA PSI
  • Barreca M, Spanò V, Rocca R, Bivacqua R, Abel AC, Maruca A, et al.
    Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: further chemical modifications and potential therapeutic effects against lymphomas
    European Journal of Medicinal Chemistry. 2022; 243: 114744 (25 pp.). https://doi.org/10.1016/j.ejmech.2022.114744
    DORA PSI
  • Marzullo P, Boiarska Z, Pérez-Peña H, Abel AC, Álvarez-Bernad B, Lucena-Agell D, et al.
    Maytansinol derivatives: side reactions as a chance for new tubulin binders
    Chemistry: A European Journal. 2022; 28(2): e202103520 (10 pp.). https://doi.org/10.1002/chem.202103520
    DORA PSI
  • Mühlethaler T, Olieric N, Ehrhard VA, Wranik M, Standfuss J, Sharma A, et al.
    Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes
    In: Inaba H, ed. Microtubules. Methods and protocols. Methods in molecular biology. New York: Humana Press; 2022:349-374. https://doi.org/10.1007/978-1-0716-1983-4_23
    DORA PSI
  • Mühlethaler T, Milanos L, Ortega JA, Blum TB, Gioia D, Roy B, et al.
    Rational design of a novel tubulin inhibitor with a unique mechanism of action
    Angewandte Chemie International Edition. 2022; 61(25): e202204052 (11 pp.). https://doi.org/10.1002/anie.202204052
    DORA PSI
  • Wang H, Mörman C, Sternke-Hoffmann R, Huang CY, Prota A, Ma P, et al.
    Cu2+ ions modulate the interaction between α-synuclein and lipid membranes
    Journal of Inorganic Biochemistry. 2022; 236: 111945 (10 pp.). https://doi.org/10.1016/j.jinorgbio.2022.111945
    DORA PSI
  • de la Roche NM, Mühlethaler T, Di Martino RMC, Ortega JA, Gioia D, Roy B, et al.
    Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents
    European Journal of Medicinal Chemistry. 2022; 241: 114614 (12 pp.). https://doi.org/10.1016/j.ejmech.2022.114614
    DORA PSI
  • Jernigan F, Branstrom A, Baird JD, Cao L, Dali M, Furia B, et al.
    Preclinical and early clinical development of PTC596, a novel small-molecule tubulin-binding agent
    Molecular Cancer Therapeutics. 2021; 20(10): 1846-1857. https://doi.org/10.1158/1535-7163.MCT-20-0774
    DORA PSI
  • Matthew S, Chen Q-Y, Ratnayake R, Fermaintt CS, Lucena-Agell D, Bonato F, et al.
    Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2021; 118(9): e2021847118 (11 pp.). https://doi.org/10.1073/pnas.2021847118
    DORA PSI
  • Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO
    Comprehensive analysis of binding sites in tubulin
    Angewandte Chemie International Edition. 2021; 60(24): 13331-13342. https://doi.org/10.1002/anie.202100273
    DORA PSI
  • Xiao X, Willemse J, Voskamp P, Li X, Prota AE, Lamers M, et al.
    Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces
    Open Biology. 2021; 11(2): 200409 (14 pp.). https://doi.org/10.1098/rsob.200409
    DORA PSI
  • Yong C, Devine SM, Abel A-C, Tomlins SD, Muthiah D, Gao X, et al.
    1,3-benzodioxole-modified noscapine analogues: synthesis, antiproliferative activity, and tubulin-bound structure
    ChemMedChem. 2021; 16(18): 2882-2894. https://doi.org/10.1002/cmdc.202100363
    DORA PSI
  • Estévez-Gallego J, Josa-Prado F, Ku S, Buey RM, Balaguer FA, Prota AE, et al.
    Structural model for differential cap maturation at growing microtubule ends
    eLife. 2020; 9: e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
    DORA PSI
  • Guo B, Rodriguez-Gabin A, Prota AE, Mühlethaler T, Zhang N, Ye K, et al.
    Structural refinement of the tubulin ligand (+)-discodermolide to attenuate chemotherapy-mediated senescence
    Molecular Pharmacology. 2020; 98(2): 156-167. https://doi.org/10.1124/mol.119.117457
    DORA PSI
  • Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, et al.
    Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent
    Molecular Cell. 2020; 79(1): 191-198.e3. https://doi.org/10.1016/j.molcel.2020.06.008
    DORA PSI
  • Oliva MA, Prota AE, Rodríguez-Salarichs J, Bennani YL, Jiménez-Barbero J, Bargsten K, et al.
    Structural basis of noscapine activation for tubulin binding
    Journal of Medicinal Chemistry. 2020; 63(15): 8495-8501. https://doi.org/10.1021/acs.jmedchem.0c00855
    DORA PSI
  • Xiao X, Elsayed SS, Wu C, van der Heul HU, Metsä-Ketelä M, Du C, et al.
    Functional and structural insights into a novel promiscuous ketoreductase of the lugdunomycin biosynthetic pathway
    ACS Chemical Biology. 2020; 15(9): 2529-2538. https://doi.org/10.1021/acschembio.0c00564
    DORA PSI
  • Brindisi M, Ulivieri C, Alfano G, Gemma S, de Asís Balaguer F, Khan T, et al.
    Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
    European Journal of Medicinal Chemistry. 2019; 162: 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
    DORA PSI
  • Cury NM, Mühlethaler T, Laranjeira ABA, Canevarolo RR, Zenatti PP, Lucena-Agell D, et al.
    Structural basis of colchicine-site targeting acylhydrazones active against multidrug-resistant acute lymphoblastic leukemia
    iScience. 2019; 21: 95-109. https://doi.org/10.1016/j.isci.2019.10.003
    DORA PSI
  • Dohle W, Prota AE, Menchon G, Hamel E, Steinmetz MO, Potter BVL
    Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure.
    ACS Omega. 2019; 4: 755-764. https://doi.org/10.1021/acsomega.8b02879
    DORA PSI
  • Dolenc J, van Gunsteren WF, Prota AE, Steinmetz MO, Missimer JH
    Conformational properties of the chemotherapeutic drug analogue Epothilone A: how to model a flexible protein ligand using scarcely available experimental data
    Journal of Chemical Information and Modeling. 2019; 59(5): 2218-2230. https://doi.org/10.1021/acs.jcim.9b00171
    DORA PSI
  • Faltova L, Jiang K, Frey D, Wu Y, Capitani G, Prota AE, et al.
    Crystal structure of a heterotetrameric katanin p60:p80 complex
    Structure. 2019; 27(9): 1375-1383.e3. https://doi.org/10.1016/j.str.2019.07.002
    DORA PSI
  • Patterson JC, Joughin BA, Prota AE, Mühlethaler T, Jonas OH, Whitman MA, et al.
    VISAGE reveals a targetable mitotic spindle vulnerability in cancer cells
    Cell Systems. 2019; 9(1): 74-92.e8. https://doi.org/10.1016/j.cels.2019.05.009
    DORA PSI
  • de Asís Balaguer F, Mühlethaler T, Estévez-Gallego J, Calvo E, Giménez-Abián J, Risinger AL, et al.
    Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands
    International Journal of Molecular Sciences. 2019; 20(6): 1392 (17 pp.). https://doi.org/10.3390/ijms20061392
    DORA PSI
  • Żyła DS, Prota AE, Capitani G, Glockshuber R
    Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria
    Journal of Biological Chemistry. 2019; 294(27): 10553-10563. https://doi.org/10.1074/jbc.RA119.008610
    DORA PSI
  • Bueno O, Estévez Gallego J, Martins S, Prota AE, Gago F, Gómez-SanJuan A, et al.
    High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design
    Scientific Reports. 2018; 8(1): 4242 (17 pp.). https://doi.org/10.1038/s41598-018-22382-x
    DORA PSI
  • Dohle W, Jourdan FL, Menchon G, Prota AE, Foster PA, Mannion P, et al.
    Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin Co-crystal structure
    Journal of Medicinal Chemistry. 2018; 61(3): 1031-1044. https://doi.org/10.1021/acs.jmedchem.7b01474
    DORA PSI
  • Field JJ, Pera B, Estévez Gallego J, Calvo E, Rodríguez-Salarichs J, Sáez-Calvo G, et al.
    Zampanolide binding to tubulin indicates cross-talk of taxane site with colchicine and nucleotide sites
    Journal of Natural Products. 2018; 81(3): 494-505. https://doi.org/10.1021/acs.jnatprod.7b00704
    DORA PSI
  • Jiang K, Faltova L, Hua S, Capitani G, Prota AE, Landgraf C, et al.
    Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex
    Structure. 2018; 26(3): 375-382. https://doi.org/10.1016/j.str.2017.12.017
    DORA PSI
  • Menchon G, Prota AE, Lucena-Agell D, Bucher P, Jansen R, Irschik H, et al.
    A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin
    Nature Communications. 2018; 9(1): 2106 (9 pp.). https://doi.org/10.1038/s41467-018-04535-8
    DORA PSI
  • Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sustainable syntheses of (-)-jerantinines A & E and structural characterisation of the jerantinine-tubulin complex at the colchicine binding site
    Scientific Reports. 2018; 8(1): 10617 (7 pp.). https://doi.org/10.1038/s41598-018-28880-2
    DORA PSI
  • Steinmetz MO, Prota AE
    Microtubule-targeting agents: strategies to hijack the cytoskeleton
    Trends in Cell Biology. 2018; 28(10): 776-792. https://doi.org/10.1016/j.tcb.2018.05.001
    DORA PSI
  • Bohnacker T, Prota AE, Beaufils F, Burke JE, Melone A, Inglis AJ, et al.
    Deconvolution of buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention
    Nature Communications. 2017; 8: 14683 (13 pp.). https://doi.org/10.1038/ncomms14683
    DORA PSI
  • Canela M-D, Noppen S, Bueno O, Prota AE, Bargsten K, Sáez-Calvo G, et al.
    Antivascular and antitumor properties of the tubulin-binding chalcone TUB091
    Oncotarget. 2017; 8(9): 14325-14342. https://doi.org/10.18632/oncotarget.9527
    DORA PSI
  • Gaspari R, Prota AE, Bargsten K, Cavalli A, Steinmetz MO
    Structural basis of cis- and trans-combretastatin binding to tubulin
    Chem. 2017; 2(1): 102-113. https://doi.org/10.1016/j.chempr.2016.12.005
    DORA PSI
  • Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, et al.
    Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent
    Molecular Cell. 2017; 68(1): 210-223. https://doi.org/10.1016/j.molcel.2017.09.012
    DORA PSI
  • Kumar A, Manatschal C, Rai A, Grigoriev I, Steiner Degen M, Jaussi R, et al.
    Short linear sequence motif LxxPTPh targets diverse proteins to growing microtubule ends
    Structure. 2017; 25(6): 924-932. https://doi.org/10.1016/j.str.2017.04.010
    DORA PSI
  • Prota AE, Bargsten K, Redondo-Horcajo M, Smith AB, Yang C-PH, McDaid HM, et al.
    Structural basis of microtubule stabilization by discodermolide
    ChemBioChem. 2017; 18(10): 905-909. https://doi.org/10.1002/cbic.201600696
    DORA PSI
  • Rezabkova L, Jiang K, Capitani G, Prota AE, Akhmanova A, Steinmetz MO, et al.
    Structural basis of katanin p60:p80 complex formation
    Scientific Reports. 2017; 7: 14893 (8 pp.). https://doi.org/10.1038/s41598-017-14194-2
    DORA PSI
  • Sáez-Calvo G, Sharma A, de Asís Balaguer F, Barasoain I, Rodríguez-Salarichs J, Olieric N, et al.
    Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin
    Cell Chemical Biology. 2017; 24(6): 737-750. https://doi.org/10.1016/j.chembiol.2017.05.016
    DORA PSI
  • Weinert T, Olieric N, Cheng R, Brünle S, James D, Ozerov D, et al.
    Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons
    Nature Communications. 2017; 8(1): 542 (11 pp.). https://doi.org/10.1038/s41467-017-00630-4
    DORA PSI
  • Doodhi H, Prota AE, Rodríguez-García R, Xiao H, Custar DW, Bargsten K, et al.
    Termination of protofilament elongation by eribulin induces lattice defects that promote microtubule catastrophes
    Current Biology. 2016; 26(13): 1713-1721. https://doi.org/10.1016/j.cub.2016.04.053
    DORA PSI
  • Prota AE, Setter J, Waight AB, Bargsten K, Murga J, Diaz JF, et al.
    Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation
    Journal of Molecular Biology. 2016; 428(15): 2981-2988. https://doi.org/10.1016/j.jmb.2016.06.023
    DORA PSI
  • Trigili C, Barasoain I, Sánchez-Murcia PA, Bargsten K, Redondo-Horcajo M, Nogales A, et al.
    Structural determinants of the dictyostatin chemotype for tubulin binding affinity and antitumor activity against taxane- and epothilone-resistant cancer cells
    ACS Omega. 2016; 1(6): 1192-1204. https://doi.org/10.1021/acsomega.6b00317
    DORA PSI
  • Waight AB, Bargsten K, Doronina S, Steinmetz MO, Sussman D, Prota AE
    Structural basis of microtubule destabilization by potent auristatin anti-mitotics
    PLoS One. 2016; 11(8): e0160890 (14 pp.). https://doi.org/10.1371/journal.pone.0160890
    DORA PSI
  • Wieczorek M, Tcherkezian J, Bernier C, Prota AE, Chaaban S, Rolland Y, et al.
    The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity
    Science Translational Medicine. 2016; 8(365): 365ra159 (14 pp.). https://doi.org/10.1126/scitranslmed.aag1093
    DORA PSI
  • Weinert T, Olieric V, Waltersperger S, Panepucci E, Chen L, Zhang H, et al.
    Fast native-SAD phasing for routine macromolecular structure determination
    Nature Methods. 2015; 12(2): 131-133. https://doi.org/10.1038/nmeth.3211
    DORA PSI
  • Prota AE, Bargsten K, Diaz JF, Marsh M, Cuevas C, Liniger M, et al.
    A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2014; 111(38): 13817-13821. https://doi.org/10.1073/pnas.1408124111
    DORA PSI
  • Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann K-H, Miller JH, et al.
    Structural basis of microtubule stabilization by laulimalide and peloruside A
    Angewandte Chemie International Edition. 2014; 53(6): 1621-1625. https://doi.org/10.1002/anie.201307749
    DORA PSI
  • Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, et al.
    The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization
    Journal of Molecular Biology. 2014; 426(8): 1848-1860. https://doi.org/10.1016/j.jmb.2014.02.005
    DORA PSI
  • Furger E, Frei DC, Schibli R, Fischer E, Prota AE
    Structural basis for universal corrinoid recognition by the cobalamin transport protein haptocorrin
    Journal of Biological Chemistry. 2013; 288(35): 25466-25476. https://doi.org/10.1074/jbc.M113.483271
    DORA PSI
  • Leppänen V-M, Tvorogov D, Kisko K, Prota AE, Jeltsch M, Anisimov A, et al.
    Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2013; 110(32): 12960-12965. https://doi.org/10.1073/pnas.1301415110
    DORA PSI
  • Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann K-H, et al.
    Molecular mechanism of action of microtubule-stabilizing anticancer agents
    Science. 2013; 339(6119): 587-590. https://doi.org/10.1126/science.1230582
    DORA PSI
  • Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, et al.
    Structural basis of tubulin tyrosination by tubulin tyrosine ligase
    Journal of Cell Biology. 2013; 200(3): 259-270. https://doi.org/10.1083/jcb.201211017
    DORA PSI
  • Grünewald FS, Prota AE, Giese A, Ballmer-Hofer K
    Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling
    Biochimica et Biophysica Acta: Proteins and Proteomics. 2010; 1804(3): 567-580. https://doi.org/10.1016/j.bbapap.2009.09.002
    DORA PSI
  • Leppänen V-M, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, et al.
    Structural determinants of growth factor binding and specificity by VEGF receptor 2
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2010; 107(6): 2425-2430. https://doi.org/10.1073/pnas.0914318107
    DORA PSI
  • Lingaraju GM, Prota AE, Winkler FK
    Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum
    DNA Repair. 2009; 8(7): 857-864. https://doi.org/10.1016/j.dnarep.2009.03.009
    DORA PSI
  • Cébe-Suarez S, Grünewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, et al.
    Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR
    FASEB Journal. 2008; 22(8): 3078-3086. https://doi.org/10.1096/fj.08-107219
    DORA PSI
  • Pieren M, Prota AE, Ruch C, Kostrewa D, Wagner A, Biedermann K, et al.
    Crystal structure of the Orf virus NZ2 variant of vascular endothelial growth factor-E. Implications for receptor specificity
    Journal of Biological Chemistry. 2006; 281(28): 19578-19587. https://doi.org/10.1074/jbc.M601842200
    DORA PSI
  • Wagner A, Pieren M, Schulze-Briese C, Ballmer-Hofer K, Prota AE
    Structure determination of VEGF-E by sulfur SAD
    Acta Crystallographica Section D: Structural Biology. 2006; 62(11): 1430-1434. https://doi.org/10.1107/S0907444906036742
    DORA PSI
  • Lingaraju GM, Sartori AA, Kostrewa D, Prota AE, Jiricny J, Winkler FK
    A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure
    Structure. 2005; 13(1): 87-98. https://doi.org/10.1016/j.str.2004.10.011
    DORA PSI
  • Cavalli A, Prota AE, Stehle T, Dermody TS, Recanatini M, Folkers G, et al.
    A molecular dynamics study of reovirus attachment protein σ1 reveals conformational changes in σ1 structure
    Biophysical Journal. 2004; 86(6): 3423-3431. https://doi.org/10.1529/biophysj.103.030825
    DORA PSI
  • Prota AE, Campbell JA, Schelling P, Forrest JC, Watson MJ, Peters TR, et al.
    Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2003; 100(9): 5366-5371. https://doi.org/10.1073/pnas.0937718100
    DORA PSI

Prota AE, Sage DR, Stehle T, Fingeroth JD
The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2002; 99: 10641.

Original publication: 10.1073/pnas.162360499


Chappell JD, Prota AE, Dermody TS and Stehle T
Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber 
EMBO J 21, 1-11 (2002).

Original publication: 10.1093/emboj/21.1.1


Vogt J, Perozzo R, Pautsch A, Prota A, Schelling P, Pilger B, Folkers G, Scapozza L and Schulz GE
Nucleoside binding site of herpes simplex type 1 thymidine kinase analyzed by x-ray crystallography 
Proteins 41, 545-553 (2000).

Original publication: 10.1002/1097-0134(20001201)41:4<545::aid-prot110>3.0.co;2-8


Scapozza L, Ballmer P, Johner R, Perozzo R, Pilger B, Pospisil P, Prota A, Schelling P, Spadola L, Wurth C and Folkers G
Extended substrate acceptance of herpes simplex virus type 1 thymidine kinase: A new chance for gene and antiviral therapy 
CHIMIA International Journal for Chemistry 54, 663-668 (2000).


Prota A, Vogt J, Pilger B, Perozzo R, Wurth C, Marquez VE, Russ P, Schulz GE, Folkers G and Scapozza L
Kinetics and crystal structure of the wild-type and the engineered y101f mutant of herpes simplex virus type 1 thymidine kinase interacting with (north)-methanocarba-thymidine 
Biochemistry 39, 9597-9603 (2000).

Original publication: 10.1021/bi000668q


Folkers G, Prota A and Merz A
Modelling of guanine-derivative-protein interaction complexes as a basis of drug design 
Farmaco 50, 449-454 (1995).