Dr. Tobias Weinert

Kurzbeschreibung
Senior Scientist and PI
Tobias Weinert Picture
Téléphone
Orc-ID
0000-0002-0339-3722
E-ResearchID
J-6353-2017
Institut Paul Scherrer PSI
Forschungsstrasse 111
5232 Villigen PSI
Suisse


Serial Crystallography and the Dynamic Nature of Proteins

My research focuses on advancing time-resolved serial crystallography at synchrotrons and free-electron lasers to investigate the structural dynamics of proteins, in particular enzymes. A key goal is to adapt and extend methods developed at XFELs for use at synchrotron sources, thereby broadening the accessibility of dynamic structural studies. By using precisely timed external triggers, I aim to synchronize conformational changes in protein crystals and capture transient intermediates with atomic spatial and high temporal resolution.

A central part of my research program targets systems that lack intrinsic photoactivity. In these cases, the challenge lies in designing alternative triggering strategies that initiate specific molecular processes in a controlled and reproducible manner. My interest lies in combining such experimental approaches with advanced computational tools to resolve overlapping structural states, reconstruct reaction coordinates, and extract kinetic information directly from time-resolved crystallographic data. This includes dimensionality reduction, spectral and correlation analyses, and machine learning-based classification methods.

By integrating methodological development with computational analysis, I aim to establish time-resolved serial crystallography as a broadly applicable tool for understanding protein dynamics under functionally relevant conditions. My long-term objective is to gain deeper insight into enzyme mechanisms and to enable the rational manipulation of protein function.

In parallel to my PI role, I also serve as a senior scientist at LBR, where I support serial crystallography and time-resolved serial crystallography activities with my extensive experience in experimental design, data acquisition, and data processing.

  • Mulder M, Hwang S, Broser M, Brünle S, Skopintsev P, Schattenberg C, et al.
    Structural insights into the opening mechanism of C1C2 channelrhodopsin
    Journal of the American Chemical Society. 2025; 147(1): 1282-1290. https://doi.org/10.1021/jacs.4c15402
    DORA PSI
  • Bertrand Q, Nogly P, Nango E, Kekilli D, Khusainov G, Furrer A, et al.
    Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate
    Nature Communications. 2024; 15: 10278 (11 pp.). https://doi.org/10.1038/s41467-024-54422-8
    DORA PSI
  • Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, et al.
    Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography
    Nature Chemistry. 2024; 16: 624-632. https://doi.org/10.1038/s41557-023-01413-9
    DORA PSI
  • Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, et al.
    Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography
    Nature Communications. 2024; 15(1): 10837 (13 pp.). https://doi.org/10.1038/s41467-024-55109-w
    DORA PSI
  • Gotthard G, Mous S, Weinert T, Maia RNA, James D, Dworkowski F, et al.
    Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography
    IUCrJ. 2024; 11(5): (17 pp.). https://doi.org/10.1107/S2052252524005608
    DORA PSI
  • Khusainov G, Standfuss J, Weinert T
    The time revolution in macromolecular crystallography
    Structural Dynamics. 2024; 11(2): 020901 (17 pp.). https://doi.org/10.1063/4.0000247
    DORA PSI
  • Casadei CM, Hosseinizadeh A, Bliven S, Weinert T, Standfuss J, Fung R, et al.
    Low-pass spectral analysis of time-resolved serial femtosecond crystallography data
    Structural Dynamics. 2023; 10(3): 034101 (18 pp.). https://doi.org/10.1063/4.0000178
    DORA PSI
  • Gruhl T, Weinert T, Rodrigues MJ, Milne CJ, Ortolani G, Nass K, et al.
    Ultrafast structural changes direct the first molecular events of vision
    Nature. 2023; 615: 939-944. https://doi.org/10.1038/s41586-023-05863-6
    DORA PSI
  • Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, et al.
    Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source
    IUCrJ. 2023; 10(6): 729-737. https://doi.org/10.1107/S2052252523008618
    DORA PSI
  • Maestre-Reyna M, Wang P-H, Nango E, Hosokawa Y, Saft M, Furrer A, et al.
    Visualizing the DNA repair process by a photolyase at atomic resolution
    Science. 2023; 382(6674): eadd7795 (14 pp.). https://doi.org/10.1126/science.add7795
    DORA PSI
  • Rodrigues MJ, Casadei CM, Weinert T, Panneels V, Schertler GFX
    Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect
    Acta Crystallographica Section D: Structural Biology. 2023; 79(3): D79 (10 pp.). https://doi.org/10.1107/S2059798323000931
    DORA PSI
  • Wranik M, Kepa MW, Beale EV, James D, Bertrand Q, Weinert T, et al.
    A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers
    Nature Communications. 2023; 14(1): 7956 (12 pp.). https://doi.org/10.1038/s41467-023-43523-5
    DORA PSI
  • Wranik M, Weinert T, Slavov C, Masini T, Furrer A, Gaillard N, et al.
    Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography
    Nature Communications. 2023; 14(1): 903 (12 pp.). https://doi.org/10.1038/s41467-023-36481-5
    DORA PSI
  • Cellini A, Shankar MK, Wahlgren WY, Nimmrich A, Furrer A, James D, et al.
    Structural basis of the radical pair state in photolyases and cryptochromes
    Chemical Communications. 2022; 58(31): 4889-4892. https://doi.org/10.1039/D2CC00376G
    DORA PSI
  • Gao L, Meiring JCM, Varady A, Ruider IE, Heise C, Wranik M, et al.
    In vivo photocontrol of microtubule dynamics and integrity, migration and mitosis, by the potent GFP-imaging-compatible photoswitchable reagents SBTubA4P and SBTub2M
    Journal of the American Chemical Society. 2022; 144(12): 5614-5628. https://doi.org/10.1021/jacs.2c01020
    DORA PSI
  • Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, et al.
    Dynamics and mechanism of a light-driven chloride pump
    Science. 2022; 375(6583): 845-851. https://doi.org/10.1126/science.abj6663
    DORA PSI
  • Gao L, Meiring JCM, Kraus Y, Wranik M, Weinert T, Pritzl SD, et al.
    A robust, GFP-orthogonal photoswitchable inhibitor scaffold extends optical control over the microtubule cytoskeleton
    Cell Chemical Biology. 2021; 28(2): 228-241. https://doi.org/10.1016/j.chembiol.2020.11.007
    DORA PSI
  • Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, et al.
    Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser
    IUCrJ. 2021; 8: 905-920. https://doi.org/10.1107/S2052252521008046
    DORA PSI
  • Nass K, Cheng R, Vera L, Mozzanica A, Redford S, Ozerov D, et al.
    Advances in long-wavelength native phasing at X-ray free-electron lasers
    IUCrJ. 2020; 7: 965-975. https://doi.org/10.1107/S2052252520011379
    DORA PSI
  • Skopintsev P, Ehrenberg D, Weinert T, James D, Kar RK, Johnson PJM, et al.
    Femtosecond-to-millisecond structural changes in a light-driven sodium pump
    Nature. 2020; 583: 314-318. https://doi.org/10.1038/s41586-020-2307-8
    DORA PSI
  • Weinert T, Panneels V
    Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example
    In: Perez C, Maier T, eds. Expression, purification, and structural biology of membrane proteins. Methods in molecular biology. New York: Humana; 2020:321-338. https://doi.org/10.1007/978-1-0716-0373-4_21
    DORA PSI
  • Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, et al.
    Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7
    Cell. 2019; 178(5): 1222-1230. https://doi.org/10.1016/j.cell.2019.07.028
    DORA PSI
  • James D, Weinert T, Skopintsev P, Furrer A, Gashi D, Tanaka T, et al.
    Improving high viscosity extrusion of microcrystals for time-resolved serial femtosecond crystallography at X-ray lasers
    Journal of Visualized Experiments. 2019; 2019(144): e59087 (12 pp.). https://doi.org/10.3791/59087
    DORA PSI
  • Weinert T, Skopintsev P, James D, Dworkowski F, Panepucci E, Kekilli D, et al.
    Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography
    Science. 2019; 365(6448): 61-65. https://doi.org/10.1126/science.aaw8634
    DORA PSI
  • Aher A, Kok M, Sharma A, Rai A, Olieric N, Rodriguez-Garcia R, et al.
    CLASP suppresses microtubule catastrophes through a single TOG domain
    Developmental Cell. 2018; 46(1): 40-58.e8. https://doi.org/10.1016/j.devcel.2018.05.032
    DORA PSI
  • Huang C-Y, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, et al.
    In situ serial crystallography for rapid de novo membrane protein structure determination.
    Communications Biology. 2018; 1: 124 (8 pp.). https://doi.org/10.1038/S42003-018-0123-6
    DORA PSI
  • Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, et al.
    Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
    Science. 2018; 361(6398): eaat0094 (7 pp.). https://doi.org/10.1126/science.aat0094
    DORA PSI
  • Tsai C-J, Pamula F, Nehmé R, Mühle J, Weinert T, Flock T, et al.
    Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity
    Science Advances. 2018; 4(9): aat7052 (9 pp.). https://doi.org/10.1126/sciadv.aat7052
    DORA PSI
  • Jiang S, Wang L, Huang M, Jia Z, Weinert T, Warkentin E, et al.
    DM9 domain containing protein functions as a pattern recognition receptor with broad microbial recognition spectrum
    Frontiers in Immunology. 2017; 8: 1607 (17 pp.). https://doi.org/10.3389/fimmu.2017.01607
    DORA PSI
  • Markovic-Mueller S, Stuttfeld E, Asthana M, Weinert T, Bliven S, Goldie KN, et al.
    Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A
    Structure. 2017; 25(2): 341-352. https://doi.org/10.1016/j.str.2016.12.012
    DORA PSI
  • Vercellino I, Rezabkova L, Olieric V, Polyhach Y, Weinert T, Kammerer RA, et al.
    Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation
    Proceedings of the National Academy of Sciences of the United States of America PNAS. 2017; 114(46): E9821-E9828. https://doi.org/10.1073/pnas.1712621114
    DORA PSI
  • Weinert T, Olieric N, Cheng R, Brünle S, James D, Ozerov D, et al.
    Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons
    Nature Communications. 2017; 8(1): 542 (11 pp.). https://doi.org/10.1038/s41467-017-00630-4
    DORA PSI
  • Huang C-Y, Olieric V, Ma P, Howe N, Vogeley L, Liu X, et al.
    In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures
    Acta Crystallographica Section D: Structural Biology. 2016; 72(1): 93-112. https://doi.org/10.1107/S2059798315021683
    DORA PSI
  • Olieric V, Weinert T, Finke AD, Anders C, Li D, Olieric N, et al.
    Data-collection strategy for challenging native SAD phasing
    Acta Crystallographica Section D: Structural Biology. 2016; 72(3): 421-429. https://doi.org/10.1107/S2059798315024110
    DORA PSI
  • Waltersperger S, Olieric V, Pradervand C, Glettig W, Salathe M, Fuchs MR, et al.
    PRIGo: a new multi-axis goniometer for macromolecular crystallography
    Journal of Synchrotron Radiation. 2015; 22: 895-900. https://doi.org/10.1107/S1600577515005354
    DORA PSI
  • Weinert T, Olieric V, Waltersperger S, Panepucci E, Chen L, Zhang H, et al.
    Fast native-SAD phasing for routine macromolecular structure determination
    Nature Methods. 2015; 12(2): 131-133. https://doi.org/10.1038/nmeth.3211
    DORA PSI