Gemeinsam statt einsam
An SwissFEL und SLS Biomoleküle entschlüsseln: Proteine sind ein begehrtes, aber widerspenstiges Forschungsobjekt. Eine für Freie-Elektronen-Röntgenlaser wie dem zukünftigen SwissFEL des PSI entwickelte Methode soll ihre Erforschung nun ein grosses Stück vorantreiben. Dabei werden viele identische, kleine Proteinproben in kurzen Abständen hintereinander mit einem Röntgenstrahl durchleuchtet. Damit wird ein bisheriges Hauptproblem der Erforschung von Proteinen umgangen: Proben in ausreichender Grösse herzustellen.
Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent beta - emitters: In vitro and in vivo study of a 44Sc-DOTA-folate conjugate
Research Division Biology and Chemistry (BIO), Folate Receptor Targeting Group, Head Cristina Müller. In recent years, implementation of 68Ga-radiometalated peptides for PET imaging of cancer has attracted the attention of clinicians. Herein, we propose the use of 44Sc (half-life = 3.97 h, average β+ energy [Eβ+av] = 632 keV) as a valuable alternative to 68Ga (half-life = 68 min, Eβ+av = 830 keV) for imaging and dosimetry before 177Lu-based radionuclide therapy.
Wie Botox an Nervenzellen bindet
Botox ist ein hochgefährliches Gift, das Lähmungen verursacht. In der Kosmetik wird es zur zeitweiligen Beseitigung von Falten und in der Medizin etwa als Mittel gegen Migräne oder zur Korrektur von Strabismus (Schielen) eingesetzt. Ein Forschungsteam hat nun bestimmt, wie das Toxinmolekül an die Nervenzelle bindet, deren Aktivität vom Gift blockiert wird. Die Ergebnisse können nützlich für die Entwicklung verbesserter Medikamente sein, bei denen die Gefahr einer Überdosierung geringer ist als bisher.
Einblick in die Schaltzentralen der Zellkommunikation
Zahlreiche Prozesse in unserem Körper wie das Sehen, Riechen oder Schmecken werden durch eine wichtige Familie von Sensoren auf der Oberfläche von Zellen bewerkstelligt, die man G-Protein-gekoppelte Rezeptoren (GPCR) nennt. Forscher haben nun die bislang bekannten räumlichen Strukturen von GPC-Rezeptoren verglichen und ein stabilisierendes Gerüst von feinen Verstrebungen entdeckt, das charakteristisch ist für die Architektur der gesamten GPCR-Familie. Das Wissen um diese im Lauf der Evolution konservierten Baumerkmale kann für die Entwicklung neuer Medikamente von erheblichem Nutzen sein.
Wie stabilisierte Zellfasern Krebszellen am Teilen hindern
Die unter dem Schlagwort Chemotherapie verwendeten Krebsmedikamente hindern Zellen daran sich zu teilen. Da sich die Zellen in einem wachsenden Tumor häufiger teilen als andere, werden Tumorzellen besonders stark geschädigt. Forscher des Paul Scherrer Instituts und der ETH Zürich haben nun für eine Klasse solcher Medikamente den genauen Wirkmechanismus aufgeklärt. Die gewonnenen Informationen sind so exakt, dass man nun gezielt Medikamente entwickeln könnte, die noch besser an ihre Aufgabe angepasst sind.
Nobelpreiswürdig: G-Protein-gekoppelte Rezeptoren
Der Nobelpreis für Chemie geht in diesem Jahr an Robert J. Lefkowitz und Brian K. Kobilka. Sie haben herausgefunden, wie eine Familie von Rezeptoren funktioniert, die man G-Protein-gekoppelte Rezeptoren (GPCR) nennt. Auch am PSI leisten Wissenschaftler Beiträge auf diesem Forschungsgebiet.
Wenn die Datenleitung in die Zelle versagt
Lebende Zellen empfangen dauernd Informationen von aussen, die über Rezeptoren in das Zellinnere weitergeleitet werden. Genetisch bedingte Fehler in solchen Rezeptoren sind der Grund für zahlreiche Erbkrankheiten darunter verschiedene hormonelle Funktionsstörungen oder Nachtblindheit. Forschern des Paul Scherrer Instituts ist es nun erstmals gelungen, die exakte Struktur eines solchen fehlerhaften Rezeptors aufzuklären.
Grundstrukturen des Sehens entschlüsselt
Am Anfang des Sehvorgangs steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor, der angeregt wird, seine Form zu verändern und so den Rest des Vorgangs anzustossen. Forscher haben die Struktur des Rhodopsinmoleküls in dem kurzlebigen angeregten Zustand bestimmt und so ein genaues Bild der ersten Stufe des Sehvorgangs geliefert.
Den Lebensnerv des Tumors treffen
Um wachsen zu können, muss ein Krebstumor von Blut- und Lymphgefässen durchzogen sein, die ihn mit Sauerstoff und Nährstoffen versorgen und durch die der in der Zelle entstehende Abfall entsorgt werden kann. Nun wurde ein wesentlicher Mechanismus aufgeklärt, durch den Tumore umliegende Gefässe veranlassen, sich zu verzweigen und in den Tumor hineinzuwachsen. Dieses Wissen kann in Zukunft für die weitere Entwicklung neuer Medikamente verwendet werden, die das Wachstum der Gefässe verhindern und so den Tumor aushungern.
Ticket für die Reise durch die Zelle
Publikation in Cell. Forscher entdecken Mechanismus für wesentliche Erkennungsvorgänge in lebenden Zellen. Über ihre Ergebnisse berichten die Forscher in der neuesten Ausgabe der Fachzeitschrift Cell.