Research Statement
My vision is to systematically study the ways aerosols are formed and the different ways they evolve when present in the atmosphere in controlled ways. I lead these studies at the atmospheric simulation chambers present at PSI where it is possible to simulate aerosol formation and aging processes under controlled conditions. At the chambers my interests include using cutting edge instrumentation to study the chemical composition of organic aerosol in real-time. These studies focus on a wide range of aerosols include secondary organic aerosol from any desired volatile organic compound and oxidant combination, or from the oxidation of complex mixtures emitted from various combustion sources. Overall, these studies provide a systematic way to generate aerosol source profiles and assess their usefulness when identifying/constraining aerosol sources around the world
You can find out more about our facilities at: https://www.psi.ch/en/lac/smog-chamber
You can find my full publication list at: https://scholar.google.com/citations?user=A_Tg7MUAAAAJ&hl=en
CV
University of Wisconsin - Stevens Point B.Sc. (Chemistry and Mathematics - 2008)
University of Utah - PhD (Chemistry - 2013)
Pacific Northwest National Laboratory - Postdoctoral Researcher 2013 - 2017
Paul Scherrer Institute - Scientist 2017 - 2021 - Tenure Track 2021 - current
Select Publications
Cheung, R. K. Y.; Zhang, J.; Wang, T.; Kattner, L.; Bogler, S.; Puthussery, J. V.; Huang, R. J.; Gysel-Beer, M.; Slowik, J. G.; Verma, V.; et al. Online measurements during simulated atmospheric aging track the strongly increasing oxidative potential of complex combustion aerosols relative to their primary emissions. Environ. Sci. Technol. Lett. 2025, 12 (1), 64-72. https://doi.org/10.1021/acs.estlett.4c00956
El Haddad, I.; Vienneau, D.; Daellenbach, K. R.; Modini, R.; Slowik, J. G.; Upadhyay, A.; Vasilakos, P. N.; Bell, D.; De Hoogh, K.; Prevot, A. S. H. Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution? Atmos. Chem. Phys. 2024, 24 (20), 11981-12011. https://doi.org/10.5194/acp-24-11981-2024
Garner, N. M.; Top, J.; Mahrt, F.; El Haddad, I.; Ammann, M.; Bell, D. M. Iron-containing seed particles enhance α-pinene secondary organic aerosol mass concentration and dimer formation. Environ. Sci. Technol. 2024, 58 (38), 16984-16993. https://doi.org/10.1021/acs.est.4c07626
Li, D.; Huang, W.; Wang, D.; Wang, M.; Thornton, J. A.; Caudillo, L.; Rörup, B.; Marten, R.; Scholz, W.; Finkenzeller, H.; et al. Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation. Environ. Sci. Technol. 2024, 58 (3), 1601-1614. https://doi.org/10.1021/acs.est.3c07958
Li, K.; Zhang, J.; Bell, D. M.; Wang, T.; Lamkaddam, H.; Cui, T.; Qi, L.; Surdu, M.; Wang, D.; Du, L.; et al. Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions. NSR 2024, 11 (3), nwae014 (9 pp.). https://doi.org/10.1093/nsr/nwae014
Marten, R.; Xiao, M.; Wang, M.; Kong, W.; He, X. C.; Stolzenburg, D.; Pfeifer, J.; Marie, G.; Wang, D. S.; Elser, M.; et al. Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer. Environ. Sci. Atmos. 2024, 4 (2), 265-274. https://doi.org/10.1039/D3EA00001J
Rörup, B.; He, X. C.; Shen, J.; Baalbaki, R.; Dada, L.; Sipilä, M.; Kirkby, J.; Kulmala, M.; Amorim, A.; Baccarini, A.; et al. Temperature, humidity, and ionisation effect of iodine oxoacid nucleation. Environ. Sci. Atmos. 2024, 4 (5), 531-546. https://doi.org/10.1039/d4ea00013g
Sabic, S.; Bell, D.; Gasic, B.; Schmid, K.; Peter, T.; Marcolli, C. Exposure assessment during paint spraying and drying using PTR-ToF-MS. Front. Public Health 2024, 11, 1327187 (14 pp.). https://doi.org/10.3389/fpubh.2023.1327187
Shen, X.; Bell, D. M.; Coe, H.; Hiranuma, N.; Mahrt, F.; Marsden, N. A.; Mohr, C.; Murphy, D. M.; Saathoff, H.; Schneider, J.; et al. Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers. Atmos. Chem. Phys. 2024, 24 (18), 10869-10891. https://doi.org/10.5194/acp-24-10869-2024
Surdu, M.; Top, J.; Yang, B.; Zhang, J.; Slowik, J. G.; Prévôt, A. S. H.; Wang, D. S.; el Haddad, I.; Bell, D. M. Real-time identification of aerosol-phase carboxylic acid production using extractive electrospray ionization mass spectrometry. Environ. Sci. Technol. 2024, 58, 8857-8866. https://doi.org/10.1021/acs.est.4c01605
Wang, T.; Li, K.; Bell, D. M.; Zhang, J.; Cui, T.; Surdu, M.; Baltensperger, U.; Slowik, J. G.; Lamkaddam, H.; El Haddad, I.; et al. Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions. npj Cim. Atmos. Sci. 2024, 7 (1), 149 (9 pp.). https://doi.org/10.1038/s41612-024-00682-6
Zhang, J.; Zuend, A.; Top, J.; Surdu, M.; EI Haddad, I.; Slowik, J. G.; Prevot, A. S. H.; Bell, D. M. Estimation of the volatility and apparent activity coefficient of levoglucosan in wood-burning organic aerosols. Environ. Sci. Technol. Lett.2024, 11 (11), 1214-1219. https://doi.org/10.1021/acs.estlett.4c00608
Bell, D. M., Zhang, J., Top, J., Bogler, S., Surdu, M., Slowik, J., Prevot, A., El Haddad, I., (2023) Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol, Analytical Chemistry, 95(37), 13788–13795 https://doi.org/10.1021/acs.analchem.3c00441
Bell, D. M., Pospisilova, V., Lopez-Hilfiker, F., Bertrand, A., Xiao, M., Zhou, X., … Slowik, J. G. (2023). Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. Environmental Science: Atmospheres, 3(1), 115-123. https://doi.org/10.1039/d2ea00105e
Bell, D. M., Wu, C., Bertrand, A., Graham, E., Schoonbaert, J., Giannoukos, S., … Mohr, C. (2022). Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark. Atmospheric Chemistry and Physics, 22(19), 13167-13182. https://doi.org/10.5194/acp-22-13167-2022
Kumar, V., Slowik, J. G., Baltensperger, U., Prevot, A. S. H., & Bell, D. M. (2023). Time-resolved molecular characterization of secondary organic aerosol formed from OH and NO3 radical initiated oxidation of a mixture of aromatic precursors. Environmental Science and Technology, 57(31), 11572-11582. https://doi.org/10.1021/acs.est.3c00225
Surdu, M., Lamkaddam, H., Wang, D. S., Bell, D. M., Xiao, M., Lee, C. P., … El Haddad, I. (2023). Molecular understanding of the enhancement in organic aerosol mass at high relative humidity. Environmental Science and Technology, 57(6), 2297-2309. https://doi.org/10.1021/acs.est.2c04587
Bogler, S., Daellenbach, K. R., Bell, D. M., Prévôt, A. S. H., El Haddad, I., & Borduas-Dedekind, N. (2022). Singlet oxygen seasonality in aqueous PM10 is driven by biomass burning and anthropogenic secondary organic aerosol. Environmental Science and Technology, 56(22), 15389-15397. https://doi.org/10.1021/acs.est.2c04554
Pospisilova, V., Bell, D. M., Lamkaddam, H., Bertrand, A., Wang, L., Bhattu, D., … Slowik, J. G. (2021). Photodegradation of α-pinene secondary organic aerosol dominated by moderately oxidized molecules. Environmental Science and Technology, 55(10), 6936-6943. https://doi.org/10.1021/acs.est.0c06752
Wu, C., Bell, D. M., Graham, E. L., Haslett, S., Riipinen, I., Baltensperger, U., … Mohr, C. (2021). Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition. Atmospheric Chemistry and Physics, 21(19), 14907-14925. https://doi.org/10.5194/acp-21-14907-2021