Scientific Highlights

The vacuum chamber in which the sample was located during the experiment. (Photo: Teresa Kubacka)

Observed live with x-ray laser: electricity controls magnetism

Researchers from ETH Zurich and the Paul Scherrer Institute PSI demonstrate how the magnetic structure can be altered quickly in novel materials. The effect could be used in efficient hard drives of the future.

Elemental and magnetic contrast images in the initial state before the magnetic field is applied

Direct Observation of Magnetic Metastability in Individual Iron Nanoparticles

Studying the magnetization of individual iron (Fe) nanoparticles by magnetic spectromicroscopy reveals that superparamagnetic (SPM) and ferromagnetic blocked (FM) nanoparticles can coexist in the investigated size range of 8-20 nm.

An illustration of ARPES in an antiferromagnetic order state

Comprehensive study of the spin-charge interplay in antiferromagnetic La2-xSrxCuO4

The origin of the pseudogap and its relationship with superconductivity in the cuprates remains vague. In particular, the interplay between the pseudogap and magnetism is mysterious. Recent low-temperature angle-resolved photoemission spectroscopy (ARPES) experiments on the underdoped cuprate superconductors indicate the presence of a fully gapped Fermi surface (FS); even in the antiferromagnetic phase.

(top) 3D rendering of density distribution within carbon fibers, where high- and low-density regions are shown in black and in a semitransparent gray tone, respectively. On the left we show a fiber of 25 µm diameter, and on the right a 10 µm-diameter fiber made from a different precursor. Remarkable differences are observed between the two fibers.

Unique insight into carbon fibers on the nanoscale

Novel carbon materials are promising candidates for light and robust low-cost materials of the future. Understanding their mechanical properties benefits from highly resolved three-dimensional (3D) maps of their porosity and density fluctuations in uninterrupted representative volumes, but these are difficult to obtain with conventional imaging methods.

Section of the tomogram, parallel to the rotation axis. Three distinct gray levels are visible for air (black), glass (gray), and Ta2O5 (white).

X-ray tomography reaches 16 nm isotropic 3D resolution

Tomographic microscopy has become an invaluable imaging method in both life and materials sciences. Oftentimes, high resolving power is required simultaneously with the ability to characterize large, statistically representative sample volumes. To this task, researchers at the Paul Scherrer Institut have established ptychographic computed tomography.

© 2014 J Hugo Dil/EPFL

Spintronics: deciphering a material for future electronics

Topological insulators are the key to future spintronics technologies. EPFL scientists have unraveled how these strange materials work, overcoming one of the biggest obstacles on the way to next-generation applications.Read the full story

The ash formations in La Garita Caldera in Colorado, USA, are the result of eruptions of a supervolcano approximately 25 million years ago. (Photo: Courtesy of www.danielmcvey.com)

Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers

Super-eruptions that dwarf all historical volcanic episodes in erupted volume and environmental impact are abundant in the geological record. Such eruptions of silica-rich magmas form large calderas. The mechanisms that trigger these supereruptions are elusive because the processes occurring in conventional volcanic systems cannot simply be scaled up to the much larger magma chambers beneath super volcanoes.

(top) Schematic view of the X-PEEM experiment with in-situ applied electric fields performed at the SIM beamline of the Swiss Light Source. (bottom) X-PEEM images of an array of nickel nanoislands showing a uniform 90° in-plane magnetization reorientation (highlighted with blue circles).

Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures

Encoding information by the application of an electric field has a key role in the development of novel memory devices that can operate at high speed while keeping low energy consumption. In magnetoelectric multiferroics, magnetic and ferroelectric ordering coexist and are coupled together so that it is possible to manipulate the material's magnetic structure by applying an electric field with a negligible current flow.

Magnetic nano-rods, arranged on the sides of a hexagon (bottom) or several hexagons (middle and top), form the ring systems studied by the scientists. Several linked rings serve as a model for a frustrated system: regardless of how the magnetisation of the central rod is oriented, energetically unfavourable conditions always arise, i.e. two north poles or two south poles will inevitably meet one another - marked in yellow.

Tiny Magnets as a Model System

Scientists use nano-rods to investigate how matter assembles

In the microscopic world, everything is in motion: atoms and molecules vibrate, proteins fold, even glass is a slow flowing liquid. And during each movement there are interactions between the smallest elements - for example, the atoms - and their neighbours. To make these movements visible, scientists at the Paul Scherrer Institute PSI have developed a special model system.

Schematic view of the femtosecond laser pump/x-ray probe
experiment performed at the FEMTO slicing source identifying the atomic motion coupled to the charge and orbital order in a manganite.

Atomic motions untangled

The pursuit of capturing motion in a movie bears an obvious fascination irrespective of the time scales involved. In the atomic and molecular world where the masses are so light and the distances small the relevant time scale shifts to the subpicosecond range and the motions become frantic especially for larger molecular systems.

Artistic view of the interface between the LaAlO3 (layer on top: La atoms are yellow Al atoms are purple and O atoms are in green) and the SrTiO3 single crystal (Sr atoms are red, Ti atoms are in blue) probed with photoemission.

Soft x-ray photoelectron spectroscopy on buried complex oxide interfaces: a new method to diagnose authentic protected electronic structures

Exotic phenomena at interfaces of complex oxides are highly promising for future solid-state electronics applications. A prominent example is the interface of two wide band gap insulators formed by growing a LaAlO3 layer on TiO2-terminated SrTiO3 substrate. When the LaAlO3 thickness exceeds 3 unit cells this system undergoes a sharp insulator-to-metal transition with a two-dimensional electron gas (2DEG) appearing at the interface.

A schematic of the setup employed for the experimental demonstration. X rays are focused and scatter off a test sample that can be displaced laterally with nanometer precision. The diffraction pattern produced by the scattered X rays is collected by a detector. The sample is reconstructed on a computer from the diffraction data (see other images).

Imaging fluctuations with X-ray microscopy

X-rays allow an inside look at structures that cannot be imaged using visible light. They are used to investigate nanoscale structures of objects as varied as single cells or magnetic storage media. Yet, high-resolution images impose extreme constraints on both the X ray microscope and the samples under investigation.

Magnetic nano-chessboard. Upper part: Visualisation of the molecule using a scanning tunnel microscope; the molecular structure is indicated for two of the molecules. Lower part: Schematic representation of the self-assembly of the molecules; they fit together like pieces of a jigsaw puzzle and arrange themselves in a continuously alternating pattern.

Magnetic nano-chessboard puts itself together

Researchers from the Paul Scherrer Institute and the Indian Institute of Science Education and Research (Pune, India) have managed to ‘turn off’ the magnetization of every second molecule in an array of magnetized molecules and thereby create a ‘magnetic chessboard’. The magnetic molecules were so constructed that they were able to find their places in the nano-chessboard by themselves.

Example of skeletonization techniques used to measure bubble and pore throat sizes. a) The topology preserving skeleton with nodes shown in red at the intersections of the branches.  b) The maximal inscribed spheres used to calculate the bubble volumes. c) The maximal inscribed spheres used to calculate the pore throat diameters.  Wall thicknesses were also determined using maximal inscribed spheres. (Graphic: J. Fife/PSI; D. Baker/McGill University)Please note: all images are for single use only to illust…

X-rays provide insights into volcanic processes

Experiments performed at the Paul Scherrer Institute (PSI) investigate processes inside volcanic materials that determine whether a volcano will erupt violently or mildly.

Brookhaven’s Mark Dean and PSI’s Thorsten Schmitt at the ADRESS beamline at the Swiss Light Source. (Photo: PSI / M. Fischer)

New Insights into Superconducting Materials

An American-Swiss research team has used a new X-ray technique at Swiss Light Source (SLS) of the Paul Scherrer Institute (PSI) to investigate the magnetic properties of atomically thin layers of a parent compound of a high-temperature superconductor. It turns out that the magnetic properties of such thin films differ by only a surprisingly small degree from those of macroscopically thick samples.

Experimental Fermi surface of VSe2 sliced in three planes in 3D k-space. The FS anisotropy reflects the highly anisotropic macroscopic properties of this material. The experiment is in excellent agreement with the DFT predictions (blue contours).

Three-Dimensional Electron Realm in Crystalline Solids Revealed with Soft-X-Rays

The electronic band structure E(k) as energy E of the electrons depending on its wavevector k is the cornerstone concept of the quantum solid state theory. The main experimental method to investigate E(k) is the angle-resolved photoelectron spectroscopy (ARPES). However, a small photoelectron escape depth of a few Å largely restricts the applications of ARPES to two-dimensonal crystals.

Simon Rutishauser assembles phase and absorption gratings into the grating interferometer structure (Photo: PSI/M. Fischer)

Ultra-short X-ray laser pulses precisely surveyed for the first time

X-ray lasers belong to a modern generation of light sources from which scientists in widely different disciplines expect to obtain new knowledge about the structure and function of materials at the atomic level. On the basis of this new knowledge, it could then be possible one day to develop better medicines, more powerful computers or more efficient catalysts for energy transformation.

The researchers Claudia Cancellieri (left) and Mathilde Reinle-Schmitt at an apparatus that produces thin layers of different materials with the aid of a laser (Paul Scherrer Institute/M. Fischer)

Controversy clarified: Why two insulators together can transport electricity

How can two materials which do not conduct electricity create an electrically conducting layer when they are joined together? Since this effect was discovered in 2004, researchers have developed various hypotheses to answer this question – each with its own advocates, who defend it and try to prove its validity. Now, an international team under the leadership of researchers at the Paul Scherrer Institute has probably settled the controversy.

3D view of the spin-vector orientation as determined by SARPES

Three-Dimensional Spin Rotations in a Monolayer Electron System

In the emerging field of spintronics, the generation, injection, and in particular the control of highly spin polarized currents are main issues to be solved. Lifting of spin degeneracy by the spin-orbit interaction at surfaces, known as Rashba effect, represents a promising approach, since it generates two spin-polarized bands without the necessity of an external field. In our recent study, we realize such a system for a metallic surface layer on a semiconductor: Au/Ge(111).

PSI scientist Thorsten Schmitt (left) and post-doc Kejin Zhou (right) at the RIXS measuring station of the ADRESS beamline at SLS, where they are inserting a sample into the measuring apparatus. Here, X-rays are used for investigating materials with very high precision. (Photo: Scanderbeg Sauer Photography)

Physicists observe the splitting of an electron inside a solid

An electron has been observed to decay into two separate parts, each carrying a particular property of the electron: a spinon carrying its spin – the property making the electron behave as a tiny compass needle – and an orbiton carrying its orbital moment – which arises from the electron’s motion around the nucleus. These newly created particles, however, cannot leave the material in which they have been produced.

Fig.1: Non-magnetic state of iron-rhodium (FeRh) when illuminated by a laser pulse

Creating magnetism takes much longer than destroying it

Researchers at the Paul Scherrer Institute are finding out how long it takes to establish magnetism and how this happens.

(a) Spins align antiparallel to each other, resulting in a large lattice strain and large electric polarization. (b) Spins align helically along the b-axis, resulting in small electric polarization.

Origin of the Large Polarization in Multiferroic YMnO3 Thin Films

Multiferroic materials have attracted much interest because of their ability to control magnetism by the application of an electric field. This ability is expected to reduce the power required by electronic devices and to increase their speed. However, the number of multiferroic materials discovered so far has been small, and ferromagnetism and ferroelectricity in the known materials are often much weaker than required for practical applications.

Effect of hard-sphere fluid confinementon pair correlations represented byexperimental (top) and theoretical (bottom) anisotropic structure factors. Channel widths increase from left to right.

Liquids in narrow spaces

How does spatial confinement affect the microscopic structure of liquids?

This is a question which is receiving increasing attention from condensed matter physicists. Liquids are characterized by a short-ranged, so-called local structure, and it has been predicted theoretically about 25 years ago that confinement induces anisotropy in the local structure, and hence many properties, of liquids.

Heavy-fermion metal YbRh2Si2: f-derived Fermi surface and fine dispersion of CEF 4f bands in particular parts of the k-space

A close look at correlated electrons in heavy-fermion metal through ARPES

Showing astonishing properties like magnetism, superconductivity, Kondo and heavy-fermion (HF) behavior, rare-earth intermetallic compounds have been at the forefront of modern solid state physics for many years. Most of these properties are related to a delicate interplay between the partially filled 4f-shell and conduction electrons.

Model of the eukaryotic ribosome (taken from Klinge et al.)

New insights into the cell’s protein factory

Eukaryotic ribosomes are among the most complex cellular machineries of the cell. These large macromolecular assemblies are responsible for the production of all proteins and are thus of pivotal importance to all forms of life. Two independent research groups at the ETH Zürich and the Institute of Genetics and Molecular and Cellular Biology in Strasbourg have obtained new insights into the atomic structure of the eukaryotic ribosome. The results have been published in the journal Science.

Angle-resolved Photoemission (ARPES) on bilayer system La2-2xSr1+2xMn2O7

Bilayer manganites reveal polarons in the midst of a metallic breakdown

The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed- matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La2-2xSr1+2xMn2O7, polaronic degrees of freedom win out across the CMR region of the phase diagram.

Dr. Nik Hauser and Prof. M. Stampanoni discuss results in the mammography room at Kantonsspital Baden. (PSI/M.Fischer)

Investigation of a new method for the diagnosis of cancer in breast tissue

Collaboration between research, hospital and industry aimed at transferring innovative procedure into daily practice.

Sketch of the orbital current (toroidal moment) within a CuO plaquette

Observation of Orbital Currents in CuO

Although high-temperature (Tc) superconductivity was discovered in the cuprates 25 years ago, there is still no consensus on its microscopic origin.

cross-section of the brain of a rat

X-ray methods help to understand brain disorders better

An international team of researchers from Denmark, Germany, Switzerland and France has developed a new method for making detailed X-ray images of brain tissue, which has been used to make the myelin sheaths of nerve fibres visible. Damage to these protective sheaths can lead to various disorders, such as multiple sclerosis. The facility for creating these images of the protective sheaths of nerve cells is being operated at the Swiss Light Source (SLS), at the Paul Scherrer Institute.

PSI scientists Valerio Scagnoli (left) and Urs Staub working on their experiment at SLS

The electron torus can help us to understand high-temperature superconductors

Paul Scherrer Institute researchers prove, for the first time, the existence of toroidal currents in solids