Demonstration of monolithically integrated III-V nanophotonic devices on silicon
For on-chip applications, we desire small active components for three reasons: integration density, higher speed because of smaller round-trip times in the cavity and smaller capacitances, and thirdly because smaller lasers can have smaller threshold currents and thus operates at lesser power.
At IBM Research, we pioneered Template-Assisted Selective Epitaxy (TASE). A novel epitaxy approach for the dense on-chip integration of III-V nanostructures. The focus of the ERC StG PLASMIC was on the development of plasmonically-enhanced hybrid nanolasers, fabricated using the TASE III-V integration approach. We have demonstrated monolithically integrated optically pumped GaAs [6], InP [5] and InGaAs micro-cavity lasers operating at room temperature as well as hybrid III-V/SI photonic crystal emitters operating over the entire telecom band [4]. We have also demonstrated the first monolithically integrated waveguide coupled InGaAs photodetectors on a SOI photonics platform operating at 50 Gbps OOK as well as light emission from scaled LEDs [2,3].
Presently we are working on expanding this using topological designs and exploiting distributed gain/loss structures as the TASE method allows for local precise placement of optical gain material.
Main publications:
1. P. Wen, P. Tiwari, S. Mauthe, H. Schmid, M. Sousa, M. Scherrer, M. Baumann, B.Bitachon, J. Leuthold, B. Gotsmann, K. E Moselund, ”Waveguide coupled III-V photodiodes monolithically integrated on Si”, Nature Communications volume 13, no. 909 (2022)
2. S. Mauthe, Y. Baumgartner, M. Sousa, Q. Ding, M. D. Rossell, A. Schenk, L. Czornomaz and K.E Moselund, “High-speed III-V nanowire photodetector monolithically integrated on Si”, Nature Communications 11 (1), 1-7, (2020)
3. S. Mauthe, P. Tiwari, M. Scherrer, D. Caimi, M. Sousa, H. Schmid, K. E. Moselund and N. Vico Triviño, “Hybrid III–V Silicon Photonic Crystal Cavity Emitting at Telecom Wavelengths”, Nano Letters 20 (12), 8768-8772 (2020)
4. S. Mauthe, N. V. Trivino, Y. Baumgartner, M. Sousa, D. Caimi, T. Stoeferle, H. Schmid and K. E. Moselund, "InP-on-Si Optically Pumped Microdisk Lasers via Monolithic Growth and Wafer Bonding," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, p. 8300507, (2019)
5. S. Wirths, B. Mayer, H. Schmid, M. Souza, J. Gooth, H. Riel and K. Moselund, “Room Temperature Lasing from Monolithically Integrated GaAs Microdisks on Si”, ACS Nano, ACS Nano, 12, pp. 2169-2175. (2018)