Fundamentals of Nature

Researchers at the Paul Scherrer Institute PSI are looking for answers to essential questions concerning the underlying structures of matter and the fundamental principles of nature. They study the composition and properties of elementary particles – the smallest building blocks of matter – or investigate the structure of biological molecules and how they perform their function. The knowledge gathered in this way opens up new approaches to finding solutions in science, medicine and technology.

Find out more at Overview Fundamentals of Nature

Mu3e Collaboration Group Picture

Mu3e Collaboration Meeting at PSI

After two years of virtual meetings, we held our first in-person collaboration meeting at PSI. We discussed the plans for detector construction and quality assurance, detector calibration and early physics analysis.

Fig.1

Blue hydrogen can help protect the climate

An international group of researchers led by the Paul Scherrer Institute has carried out in-depth analyses of the climate impact of blue hydrogen. This is produced from natural gas, with the CO2 resulting from the process captured and permanently stored. The study concludes that blue hydrogen can play a positive role in the energy transition – under certain conditions.

CsPbBr3

Quantifying Photoinduced Polaronic and Thermal Distortions in Inorganic Lead Halide Perovskite Nanocrystals

The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb–Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work the photoinduced lattice changes were investigated using combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges and ab initio simulations.

Gupta et al

Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor

The recently discovered kagome superconductor CsV3Sb5 (Tc ≃ 2.5 K) has been found to host charge order as well as a non-trivial band topology, encompassing multiple Dirac points and probable surface states. Such a complex and phenomenologically rich system is, therefore, an ideal playground for observing unusual electronic phases. Here, we report anisotropic superconducting properties of CsV3Sb5 by means of transverse-field muon spin rotation (μSR) experiments.

 

Peter Alpert working in the laboratory

Light amplification accelerates chemical reactions in aerosols

Aerosols in the atmosphere react to incident sunlight. This light is amplified in the interior of the aerosol droplets and particles, accelerating reactions. ETH and PSI researchers have now been able to demonstrate and quantify this effect and recommend factoring it into future climate models.

Daisy

Grüsse aus dem Bildungszentrum PSI

Ich heisse Daisy und bin KV Lernende am PSI. Seit Ende Februar bin ich in der Rotation und dies beim Bildungszentrum-Team.

Neugier, Anspannung, Erwartungen, Nervosität: All diese Gefühle begleiteten mich beim Abteilungswechsel.

John et al

Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing

Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions.

 

Sprachaufenthalt in England

Sprachaufenthalt in England - Salisbury!

"Wer eine Fremdsprache lernt, zieht den Hut vor einer anderen Nation"

First combined Plasma and Gas Source Mass Spectrometer for alternate isotope and element ratio Analyses of Solids, Liquids, and Gases

MC-EBIS-ICP-MS – a unique dual Ion Source Mass Spectrometer

This highlight presents a successful, in-house developed integration of an Electron Beam Ion Source (EBIS) able to ionize gases to high charge states with a customized commercial MC-ICP-MS. The successful joining of the two ion flight paths is a milestone towards comprehensive routine analyses of solids, liquids, and gases using THE SAME MASS SPECTROMETER, the latter analyses free from atmospheric contamination. After implementation of an introduction system for gas mass spectrometry, routine analyses will comprise isotope ratio and relative abundance determinations of fission gases in used nuclear fuel. In addition to the unique versatility of the MC-EBIS-ICP-MS, inclusion of the EBIS furthers opens the little-studied field of mass spectrometry of highly charged ions.

Al3(Sc,Zr)

Thermal and phase evolution during laser powder bed fusion of Al-Sc-Zr elemental powder blends

The reaction of elemental scandium and zirconium powders with liquid aluminum is observed directly via operando X-ray diffraction during laser 3D printing. This work demonstrates that elemental blends can be used to create fine-grained crack-free Al-alloys and highlights the importance of feature size.

weak_fm_linked_spiral_phase_new

Weak ferromagnetism linked to the high-temperature spiral phase of YBaCuFeO5

The layered perovskite YBaCuFeO5 is a rare example of a cycloidal spiral magnet whose ordering temperature Tspiral can be tuned far beyond room temperature by adjusting the degree of Cu2+/ Fe3+ chemical disorder in the structure. This unusual property qualifies this material as one of the most promising spin-driven multiferroic candidates. However, very little is known about the response of the spiral to magnetic fields, crucial for magnetoelectric cross-control applications. Using bulk magnetization and neutron powder diffraction measurements under magnetic fields up to 9 T, we report here a temperature-magnetic field phase diagram of this material. Besides revealing a strong stability of the spiral state, our data uncover the presence of weak ferromagnetism coexisting with the spiral modulation. Since ferromagnets can be easily manipulated with magnetic fields, this observation opens new perspectives for the control of the spiral orientation, directly linked to the polarization direction, as well as for a possible future use of this material in technological applications.

toc_nl_trlamni_.gif

Into the fourth dimension: time-resolved soft X-ray laminography

Combining time-resolved soft X-ray STXM imaging with magnetic laminography, researchers were able to investigate magnetization dynamics in a ferromagnetic microstructure resolved in all three spatial dimensions and in time. Thanks to the possibility of freely selecting the frequency of the excitation applied to the magnetic element, this technique opens the possibility to investigate resonant magneto-dynamical processes, such as e.g. magnetic vortex core gyration and switching, and spinwave emission.

Chen_Shuzhen_Diss

Shuzhen Chen successfully defended - congratulations

On 7th April 2022 Shuzhen Chen successfully defended her PhD entitled “Multiphase kinetics and chemistry at halide solution-air interfaces" at ETH Zürich. 

 

 

Water vapor nucleation at ZnO2 interface

Deciphering the molecular mechanism of water boiling at heterogeneous interfaces

Water boiling control evolution of natural geothermal systems is widely exploited in industrial processes due to the unique non-linear thermophysical behavior. Even though the properties of water both in the liquid and gas state have been extensively studied experimentally and by numerical simulations, there is still a fundamental knowledge gap in understanding the mechanism of the heterogeneous nucleate boiling controlling evaporation and condensation. In this study, the molecular mechanism of bubble nucleation at the hydrophilic and hydrophobic solid–water interface was determined by performing unbiased molecular dynamics simulations using the transition path sampling scheme. Analyzing the liquid to vapor transition path, the initiation of small void cavities (vapor bubbles nuclei) and their subsequent merging mechanism, leading to successively growing vacuum domains (vapor phase), has been elucidated. The simulations reveal the impact of the surface functionality on the adsorbed thin water molecules film structuring and the location of high probability nucleation sites.

fan shaped source grating

Broadening the field of view with a fan-shaped source grating

The orientation mismatch between the cone beam of an X-ray tube and the grating lines in a flat substrate remains a big challenge for laboratory grating-based X-ray interferometry, since it severely limits the imaging field of view. To solve this problem, we fabricated fan-shaped G0 source gratings by modulating the electric field during the deep reactive ion etching of silicon. With local electric field modulation in plasma we can etch high aspect ratio fan-shaped gratings that match the X-ray cone beam emission of a tube source. This new technology replaces the grating bending and allows a more compact design with larger field of view. Our work have recently been published in Applied Surface Science.

μSR2020 conference update

The long delayed MuSR2020 conference will run from Monday 29th August to Friday 2nd September, 2022. An in-person meeting is planned, which will be held at the Science and Technology Campus, University of Parma. Invited speakers include Bruce Gaulin, Giacomo Ghiringhelli, Reizo Kato, Ioan Pop, Jorge Quintanilla, Roberta Sessoli, Martin Wilkening and Reiner Zorn

Wang et al

Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4

Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic “kinks”—sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment.

 

TopSolic CAD-CAM

CAD-CAM

Aus Skizzen und Zeichnungen fertigten wir mit Hilfe von unserer brandneuen Bearbeitungssoftware und unseren CNC - Maschinen einen funktionierenden Druckluftmotor.

Leidinger_Paul

New group member Dr. Paul Leidinger

We would like to welcome Paul Leidinger who started on Friday, April 1.

Paul is a PostDoc working for both, the Laboratory for Catalysis and Sustainable Chemistry and the Electrochemistry Laboratory for the next 24 months. Paul is going to work on the catalytic and electrocatalytic reduction of carbon dioxide on silver surfaces. 

COVID-19: Practical information for PSI users

From 1 April 2022 several safety measures against COVID-19 have been lifted at PSI.

Kick-Off Event: FEMSPIN - Promoting spin-off activities of female academics

This project launched by Swissuniversities is dedicated to the promotion of spin-off intentions and activities of women. There will be a kick-off on May 9 at the FHNW in Olten. Deadline for registration: April 15, 2022. Follow this link for further information.