Recherche sur le Covid-19

Au PSI, plusieurs projets se consacrent à des questions de recherche importantes autour du coronavirus Sars-CoV-2 et des maladies qui en résultent. Nous vous informons sur les activités et les projets, par exemple sur les analyses de tissus pulmonaires, sur la production de protéines et d'anticorps ou sur les idées de nouvelles recherches sur le Covid-19.

Liens utils

Metamagnetic texture in a polar antiferromagnet

Metamagnetic texture in a polar antiferromagnet

The notion of a simple ordered state implies homogeneity. If the order is established by a broken symmetry, the elementary Landau theory of phase transitions shows that only one symmetry mode describes this state. At the exact points of phase coexistence, domain states composed of large regions of different phases can be stabilized by long-range interactions.

Mogi_PRL

Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators

We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of the ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall conductivity reaches a large value of 0.2e2/h in accord with a ferromagnetic response of the Cr2Ge2Te6.

LIN people

New NUM Laboratory for Neutron and Muon Instrumentation (LIN)

In the division Research with Neutrons and Muons (NUM) all technical knowledge and expertise concerned with the development and operation of the scientific instrumentation for neutron and muon experiments at our user facilities have been united in the new Laboratory for Neutron and Muon Instrumentation (LIN). 

Uemura_Yohei

Welcome Yohei Uemura

We warmly welcome Yohei Uemura as Postdoc in the Laboratory of Environmental Chemistry. He joined the Surface Chemistry group on 1 July 2019.



Yohei Uemura got his master and PhD degree in chemistry at the University of Tokyo. He has then continued on an academic career path at different universities in Japan and last at Utrecht University in the Netherlands. His speciality is the application of fast and ultrafast X-ray absorption spectroscopy techniques to follow the chemical dynamics of reactions. At PSI, Yohei Uemura will study the photolysis of organo-iodide compounds and the fate of primary and secondary iodine products in aqueous solutions at the SwissFEL and the SuperXAS beamline.

Lehrberufe à la carte 2019 Teaserbild

Lehrberufe à la carte 2019

Am 30. Juni 2019 präsentiert das PSI seine 15 verschiedenen Lehrberufe. Auch das Schülerlabor iLab öffnet an diesem Sonntag seine Türen.

Dr. Soichiro Tsujino

Soichiro Tsujino is one of the APL top reviewers of 2018

The editors of Applied Physics Letters (APL) named Dr. Soichiro Tsujino, head of the XFEL nanoengineering group of LMN, as one of the 16  ALP top reviewers in 2018.

PSI School for Masterstudents 2019

PSI School for Master Degree Students - Introducing Photons, Neutrons and Muons for Condensed Matter Physics and Materials Science

From 17 – 21 June 2019 the Neutron and Muon Division (NUM) and the Photon Science Division (PSD) of PSI hosted 18 Master Degree students of physics, chemistry, materials and interdisciplinary science, as well as nuclear engineering to provide an introduction to the characterization of materials with large scale facilities like SINQ, SμS, SLS and SwissFEL. The course taught a basic understanding of how photons, neutrons and muons interact with matter, and how this knowledge can be used to solve specific problems in materials research.

Details of the program can be found at http://indico.psi.ch/event/PSImasterschool

Measured longitudinal phase space of the injected electron beam

First serial femtosecond crystallography experiment using SwissFEL’s large bandwidth X-ray pulses

The typical mode of operation at XFEL facilities uses the so-called self-amplified spontaneous emission (SASE) process to generate the short, bright X-ray pulses. This mode of operation is stochastic in nature, causing some variance in intensity and spectrum on a shot-to-shot basis, which makes certain types of crystallographic measurements much more challenging.

Lippenstift und Bier

PSI Frauen kamen zusammen aus Solidarität

 

Am 14. Juni 2019 luden Daniela Jahns und Sonia Reber alle PSI-Frauen aller Berufsgattungen zu einem solidarischen Zusammenstehen ein und stiessen (mit alkoholfreiem Bier und Wasser) auf einen erfolgreichen Frauenstreik-Tag an - Wir setzen ein Zeichen der Solidarität für den Frauenstreik. 

keckert_t.jpg

Critical fields of Nb3Sn prepared for superconducting cavities

Nb3Sn is currently the most promising material other than niobium for future superconducting radiofrequency cavities. Critical fields above 120 mT in pulsed operation and about 80 mT in CW have been achieved in cavity tests. This is large compared to the lower critical field as derived from the London penetration depth, extracted from low field surface impedance measurements. 

Measured spectrum for five consecutive FEL pulses

First Demonstration of Sub-femtosecond X-ray Pulses at SwissFEL

We have produced ultra-short X-ray FEL pulses at SwissFEL by strongly compressing low-charge electron beams.  Single-shot spectral measurements with only a single mode (see the figure below) indicate a pulse duration well below one femtosecond (detailed analysis on the exact pulse duration is ongoing).

Kirk Arndt

The Mu3e collaboration grieves for Kirk Arndt

We lost a very good friend and wonderful colleague.

2019_Ausflug_PM

Ausflug der Polymechaniklernenden zur Chronoswiss und zum Lasertag

Am Freitag 07.06.2019 haben alle Lernenden Polymechaniker und zwei Ausbildner an einem Teamevent teilgenommen, welches durch das Bussengeld der Lernenden finanziert wurde. Bei diesem Ausflug haben wir die Firma Chronoswiss besucht und anschliessend Lasertag gespielt. Der Ausflug wurde von einem Lernenden organisiert.

bildschirmfoto_2019-06-06_um_15.14_t.jpg

Phase transition in the cuprates from a magnetic-field-free stiffness meter viewpoint

A method to measure the superconducting (SC) stiffness tensor ρs, without subjecting the sample to external magnetic field, is applied to La1.875Sr0.125CuO4. The method is based on the London equation J=-ρsA, where J is the current density and A is the vector potential which is applied in the SC state.

 

shape memory 2019

Magnetically Addressable Shape-Memory and Stiffening in a Composite Elastomer

With a specific stimulus, shape‐memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape‐memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape.

Leo et al

Multidimensional Characterization of Mixed Ligand Nanoparticles Using Small Angle Neutron Scattering

The properties of ligand protected gold nanoparticles are determined by the synergistic interplay of their structural components, including the metal core, the ligand shell, and the solvation layer. However, the simultaneous characterization of all these components remains a major challenge given their disparate chemical nature.

TOMCAT high numerical aperture detector

High-numerical-aperture optics is key to ultra-fast tomographic microscopy

A novel high-numerical-aperture macroscope optics dedicated to high-temporal and high-spatial resolution X-ray tomographic microscopy is available at TOMCAT. Coupled with the in-house developed GigaFRoST camera, this highly efficient imaging setup enables tomographic microscopy studies at 20 Hz and beyond, opening up new possibilities in tomographic investigations of dynamic processes. A detailed characterization of the macroscope performance was published in Journal of Synchrotron Radiation on May 21, 2019.

TOMCAT high numerical aperture detector

High-numerical-aperture optics is key to ultra-fast tomographic microscopy

A novel high-numerical-aperture macroscope optics dedicated to high-temporal and high-spatial resolution X-ray tomographic microscopy is available at TOMCAT. Coupled with the in-house developed GigaFRoST camera, this highly efficient imaging setup enables tomographic microscopy studies at 20 Hz and beyond, opening up new possibilities in tomographic investigations of dynamic processes. A detailed characterization of the macroscope performance was published in Journal of Synchrotron Radiation on May 21, 2019.

Gomilsek et al

Kondo screening in a charge-insulating spinon metal

The Kondo effect, an eminent manifestation of many-body physics in condensed matter, is traditionally explained as exchange scattering of conduction electrons on a spinful impurity in a metal. The resulting screening of the impurity's local moment by the electron Fermi sea is characterized by a Kondo temperature TK, below which the system enters a strongly coupled regime.

Group picture from Semiconductors to quantum technologies symposium

From semiconductors to quantum technologies symposium

While information technology over the last 50 years has been based on conventional semiconductor electronics, future technologies – aiming to enhance the performance of computers, sensors and to secure data communication for the future internet – will use the quantum origins of nature.

This symposium highlighted the opportunities for the traditional semiconductor materials to remain the platform on which also the new quantum technologies will build on. The symposium, in part a celebration of the career of PSI Quantum Technologies group leader Hans Sigg, was held at ETHZ and included notable speakers both local and international, Gabriel Aeppli (PSI, ETHZ & EPFL), Jérôme Faist & Klaus Ensslin (ETHZ), Theo Rasing (RU Nijmegen), Giordano Scappucci (QuTech-TU Delft) and Klaus von Klitzing (MPI Stuttgart).