Recherche sur le Covid-19

Au PSI, plusieurs projets se consacrent à des questions de recherche importantes autour du coronavirus Sars-CoV-2 et des maladies qui en résultent. Nous vous informons sur les activités et les projets, par exemple sur les analyses de tissus pulmonaires, sur la production de protéines et d'anticorps ou sur les idées de nouvelles recherches sur le Covid-19.

Liens utils

Top: schematic illustration of the growth of ACC particles and their transformation into crystals. Bottom: the Ca K-edge XANES spectra of ACC particles at different temperatures. ACS AuthorChoice publication

Amorphous CaCO3: Influence of the Formation Time on Its Degree of Hydration and Stability

Carbonate minerals serve as reservoir for CO2 in the global CO2 cycle, as biomineral in animal skeletons and shells of marine animals, and are used in carbon capturing techniques. Moreover, they serve as an important model system in crystallization studies, and have important commercial applications, for example as fillers. Researchers from EPFL and PSI developed a new methodology to study the crystallization of CaCO3 that offers both high temporal and spatial resolution, which is the key challenge in elucidating early stages of crystallization. Using X-ray absorption spectroscopy and other techniques it could be demonstrated that the degree of hydration of amorphous CaCO3 increases during its growth. As a result of the increasing degree of hydration, the stability of the resulting amorphous particles against solid-state crystallization decreases.

teaser image.jpg

Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach

Spent fuel management is becoming one of the major concerns in many countries with a nuclear program. The radiation aspect as well as the safe and economical part of the long-term storage of the spent nuclear fuel has to be evaluated with a high degree of confidence. To assist such project from the neutronic simulation side, a new method is proposed to systematically calculate at the same time canister loading curves and radiation sources, based on the inventory information from an in-core fuel management system.

Evidence of a Coulomb-Interaction-Induced Lifshitz Transition and Robust Hybrid Weyl Semimetal in Td-MoTe2

Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of Td-MoTe2. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations.

janoschek.jpg

Marc Janoschek appointed new head of LDM

Dr Marc Janoschek has been appointed new head of the NUM Laboratory for Scientific Developments and Novel Materials LDM. He will take office on November 15, 2018. Marc studied Physics at TU Munich and did his PhD at PSI and TUM on "Neutron Scattering on Chiral Magnets". After that he went to the University of California in San Diego as Feodor-Lynen Fellow. Since 2011 he is head of "Neutron research" in the "Condensed Matter and Magnet Science" group in Los Alamos. For his research Marc has been awarded the Wolfram Prandl Prize and the Los Alamos Fellow Prize for Outstanding Research. We wish Marc success and satisfaction for his new duties and wish to thank cordially Peter Keller, who led the LDM ad interim since March 2018.

Slowik Huang SchmaussAward crop.jpg

Jay Slowik and Ru-Jin Huang win prestigious Schmauss award

Award conferred by the Gesellschaft für Aerosolforschung (GAeF) during the International Aerosol Conference in St. Louis, MO, USA

CollabLiverpool.jpg

Collaboration meeting in Liverpool

The Mu3e collaboration met for three days at the University of Liverpool to discuss integration and assembly of the experiment and recent progress for all subdetectors.

Maximum compositional deviations at PLD relevant angular areas (±10°) versus mass‐ratios, mainly for 1 × 10−2 mbar Ar. Except for O/Mn and Li/Mn in which the maximum deviations already appear at 1 × 10−3 mbar Ar. Symbols ◼ are for RBS measurements, ▴ for ERDA measurements, and ● for data from ref. 30. Note: O/Mn deviation has a high uncertainty due to the suspicion of ambient water trapping by the amorphous film. Error bars are smaller than the symbols except for EuAlO3. (from Figure 5)

Influence of Plume Properties on Thin Film Composition in Pulsed Laser Deposition

Despite the apparent simplicity of pulsed laser deposition, consistent deposition of thin films with the desired thickness, composition, crystallinity, and quality still remains challenging. This article explores the influence of process parameters with respect to film thickness and composition, two key aspects for thin films which have a very strong effect on film properties, possible applications, and characterization.

Maximum compositional deviations at PLD relevant angular areas (±10°) versus mass‐ratios, mainly for 1 × 10−2 mbar Ar. Except for O/Mn and Li/Mn in which the maximum deviations already appear at 1 × 10−3 mbar Ar. Symbols ◼ are for RBS measurements, ▴ for ERDA measurements, and ● for data from ref. 30. Note: O/Mn deviation has a high uncertainty due to the suspicion of ambient water trapping by the amorphous film. Error bars are smaller than the symbols except for EuAlO3. (from Figure 5)

Influence of Plume Properties on Thin Film Composition in Pulsed Laser Deposition

Despite the apparent simplicity of pulsed laser deposition, consistent deposition of thin films with the desired thickness, composition, crystallinity, and quality still remains challenging. This article explores the influence of process parameters with respect to film thickness and composition, two key aspects for thin films which have a very strong effect on film properties, possible applications, and characterization.

Bernina status first summer shutdown

The summer shutdown was used to install more missing hardware. With the new components the Bernina instrument will be already very close to the full design capabilities when the exciting time of user experiments will begin in 2019.

Arnold Boecklin  Die Pest.jpg

The New York Times: Europe’s Triumphs and Troubles Are Written in Swiss Ice

The New York Times features LUC's ice core research with a story on how pollen frozen in Alpine ice traces Europe’s calamities, since the time Macbeth ruled Scotland. The image shows Arnold Böcklin painting: Die Pest, Tempera auf Tannenholz (1898, Kunstmuseum Basel)

Diagram-teaser.png

Finite-temperature critical points and quantum critical end point in a 2D magnet

The Mermin–Wagner theorem has long told us that in two dimensions a continuous symmetry can be broken, allowing a finite order parameter, only at zero temperature. Now PSI theorist Bruce Normand, working with colleagues in Aachen, Amsterdam, Lausanne and Paris, has circumvented this rule. The team was considering the thermodynamics

Thermal Critical Points and Quantum Critical End Point in the Frustrated Bilayer Heisenberg Antiferromagnet

We consider the finite-temperature phase diagram of the S=1/2 frustrated Heisenberg bilayer. Although this two-dimensional system may show magnetic order only at zero temperature, we demonstrate the presence of a line of finite-temperature critical points related to the line of first-order transitions between the dimer-singlet and -triplet regimes.

Multi-projection imaging

TOMCAT paper on hard X-ray multi-projection imaging published

The TOMCAT team in collaboration with scientists from CFEL, MaxIV and ESRF developed a method for hard X-ray multi-projection imaging, using a single crystal to split the beam into multiple beams with different directions.

Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet

Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with the Dzyaloshinskii-Moriya interaction. Recently, β-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while β-Mn itself is known as hosting an elemental geometrically frustrated spin liquid.

Crystallographic structure of [CuF2(H2O)2]2pyrazine below (left) and above the structural phase transition observed at 18 kbar. The images show calculated spin-density distributions of the ground state, with spins up and down represented in cyan and green, respectively. (Image adapted from [1].)

Quantum magnets under pressure

The demonstration that applied pressure can substantially change – rather than merely tweak – the properties of a metal–organic quantum magnet indicates a route to designing quantum materials with tailored properties.

SNI Honorary Membership for Jens Gobrecht

At this year's annual meeting of the Swiss Nanoscience Institute (SNI) Jens Gobrecht, the former Head of LMN, received the SNI Honorary Membership.

LENS.png

Founding Partners Sign Charter Establishing Neutron Source Consortium LENS

On September 12 representatives of eight European research infrastructures including SINQ at PSI signed the Charter of the League of advanced European Neutron Sources (LENS) at the International Conference of Research Infrastructures, ICRI2018 in Vienna. The signing ceremony marks the establishment of a new strategic consortium of European neutron source facilities with the aim, according to the charter, to “facilitate any form of discussion and decision-making process that has the potential to strengthen European neutron science via enhanced collaboration among the facilities”. The founding partners in the consortium include both European and national facilities in France, Germany, Sweden, Hungary, the United Kingdom, Norway and Switzerland. Other qualifying facilities are invited to join at any time.

anghel_epja_t.jpg

Solid deuterium surface degradation at ultracold neutron sources

Solid deuterium (sD2) is used as an efficient converter to produce ultracold neutrons (UCN). Itis known that the sD2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum.

Giant Pressure Dependence and Dimensionality Switching in a Metal-Organic Quantum Antiferromagnet

We report an extraordinary pressure dependence of the magnetic interactions in the metal-organic system [CuF2(H2O)2]2 pyrazine. At zero pressure, this material realizes a quasi-two-dimensional spin-1/2 square-lattice Heisenberg antiferromagnet. By high-pressure, high-field susceptibility measurements we show that the dominant exchange parameter is reduced continuously by a factor of 2 on compression.

lehmann.png

ISNR honorary membership awarded to Eberhard Lehmann

The International Society for Neutron Radiology ISNR was founded in 1996 with the aim to organize regular conferences with the focus on the use of neutrons for imaging purposes. During the 11th World Conference on Neutron Radiography, held recently in Sydney (Australia) and organized by ANSTO, the Honorary Membership of ISNR was awarded to Eberhard Lehmann - in recognition to his contributions for the progress in the field of neutron imaging on national and international level. The Neutron Imaging and Activation Group NIAG of the LNS has been active member in ISNR from the very beginning. Presently and since 2014, Markus Strobl the head of NIAG is vice-president elected of ISNR – and was reelected recently until 2022. In addition, NIAG member Pavel Trtik is now representing PSI in the ISNR board until 2022.

Diamond: a gem for micro-optics

Our image of a diamond structure was published on the cover page of the September 2018 issue of the journal "Materials Today". The corresponding paper reports on the nano-frabrication of micro-optical elements in diamond.

Figure 1 (a) Transient relative x-ray intensity of the (1.5 0.5 0.5) superlattice reflection of Sr0.97Ca0.03TiO3 upon above bandgap excitation with 40 fs pulses Inset: STO crystal structure as seen along the c-axis. phi measures the antiferrodistortive rotation of the oxygen octahedra (exaggerated) and represents the order parameter. (b) Calculated energy change per STO cubic unit cell as a function of oxygen displacement u/u0 along the in-plane cubic crystal axes resulting from the octahedral rotation at …

Moving Atoms by Photodoping

Understanding how and how fast we can drive atoms to create a structural phase transition is of fundamental interest as it directly relates to many processes in nature. Here we show that a photoexcitation can drive a purely structural phase transition before the energy is relaxed in the material that corresponds to a “warmer” equilibrated state.

General framework explaining magnetoelectric inversion of domain patterns: one parameter contains the information about the domain pattern (bottom layer), and a second parameter (middle layer) can be switched. That switching leads then to an inversion of the entire pattern (top layer). (Image: Naëmi Leo)

Multiferroics turned upside down

Experiments demonstrating the inversion of entire domain patterns in multiferroic crystals highlight just how versatile this class of materials is, and indicate a route to exploring novel functionalities.

donnelly_prize

Claire Donnelly dissertation research awards

In August 2018, Claire Donnelly was awarded the SPS Award in Computational Physics, sponsored by COMSOL, and the Werner Meyer-Ilse Memorial Award. We congratulate her on these awards as well as for the two awards received earlier this year: the ETH Medal for an outstanding doctoral thesis and the American Physical Society Richard L. Greene Dissertation Award, recognizing doctoral thesis research of exceptional quality and importance. These prizes are for her dissertation on “Hard X-ray Tomography of Three Dimensional Magnetic Structures”. Claire carried out her dissertation in the Laboratory for Mesoscopic Systems (ETH Zurich – Paul Scherrer Institute) in collaboration with the CXS group and the OMNY project, with experiments conducted at the cSAXS beamline, SLS, and Sebastian Gliga, a Marie Curie Fellow at the University of Glasgow. She will continue this research at the University of Cambridge with a Leverhulme Fellowship supported by the Newton Trust. We wish her every success! - Picture courtesy of the APS.

shang-henrik.png

Shang Gao receives SGN Young Scientist Prize

Dr. Shang Gao was awarded the Young Scientist Prize of the Swiss Neutron Scattering Society for his high quality thesis and neutron scattering investigation leading to the discovery of a spiral spin-liquid state in the compound MnSc2S4 and of fast monopole hopping rates in the spin-ice compounds CdEr2X4. The prize is sponsored by Swiss Neutronics and is awarded annualy to a young scientist in recognition of a notable scientific achievement in the form of a PhD thesis. The photo shows Shang together with the SGN president Prof. Henrik Ronnow during the prize ceremony.

donnelly prize.png

Claire Donnelly dissertation and research awards

In August 2018, Claire Donnelly was awarded the SPS Award in Computational Physics, sponsored by COMSOL, and the Werner Meyer-Ilse Memorial Award. We congratulate her on these awards as well as for two awards earlier on in the year: the ETH Medal for an outstanding doctoral thesis and the American Physical Society Richard L. Greene Dissertation Award, recognizing doctoral thesis research of exceptional quality and importance. These prizes are for her dissertation on “Hard X-ray Tomography of Three Dimensional Magnetic Structures”.

donnelly prize.jpg

Claire Donnelly dissertation research awards

Claire Donnelly, Mesoscopic Systems (ETH Zurich - PSI), was awarded the COMSOL SPS Award in Computational Physics, the Werner Meyer-Ilse Memorial Award, the ETH Medal for an outstanding doctoral thesis, and the American Physical Society Richard L. Greene Dissertation Award.