60 Jahre Hotlabor
Die am längsten in Betreib stehende kerntechnische Anlage der Schweiz befindet sich am PSI und feiert heute ihr Jubiläum.
Zusammenarbeit in der Reaktorforschung
Copenhagen Atomics und das Paul Scherrer Institut PSI haben einen Kooperationsvertrag über eine umfangreiche experimentelle Zusammenarbeit geschlossen.
Forensics: Quantitative tracing of Silicon in CRUD
Chalk River Unidentified Deposits (CRUD) are dissolved and suspended solids, product of the corrosion of structural elements in water circuits of nuclear reactors.
The chemical composition of CRUD is variable as it depends on the composition of the reactor’s structural material, as well as the types of refueling cycles. Recent internal investigations have found unexpected but significant Si-amount in CRUD. The chemical composition of CRUD holds key information for an improved understanding of CRUD formation and possible impact in fuel reliability and contamination prevention.
The standard analytical methods available in the hot laboratory did not allow an easy quantitative determination of the Si-amount in CRUD. A new innovative procedure has been developed and tested with synthetic CRUD name Syntcrud.
The adapted flex-fusion digestion method presented here is able to provide reliable concentrations of several elements within CRUD, including Si, which was not possible in methods used previously for ICPMS measurement.
A unique environment for research on highly radioactive materials
PSI has a unique (worldwide) environment for the investigation of highly radioactive / toxic materials:
> Materials (different fuel types, very high burn-up, different cladding materials, materials activated in SINQ).
> The hot lab with advanced tools for microsample analysis and preparation.
> The large-scale equipment for advanced material analysis.
This unique combination at PSI allows us to meet the needs of our industrial partners to improve plant safety / efficiency, up to fundamental research.
The quantitative distribution of fission products over the cross-section of a pellet with a shielded electron probe microanalyzer (EPMA) used for verification analysis of the material behavior to validate the model. In this context, Xe behavior during transients/failure (LOCA, RIA) is an important safety parameter that can’t be measured with the EPMA at the periphery. Microstructural EBSD investigations on a microsample extend the information horizon, which is deepened at the microXAS beamline by detailed X-ray analyses.
Hydrogen-induced softening effect in zirconium alloys
The fuel used for nuclear energy production is normally enclosed in zirconium-based cladding tubes that constitute the first barrier between the radioactive material and the environment. In water-moderated reactors, cladding tubes tend to corrode, generating hydrogen as side product. The study of the hydrogen embrittlement in zirconium alloys is of high relevance for the industry.
Depending on temperature, local hydrogen concentration, and local stress conditions, different hydrogen-induced embrittlement mechanisms can be active in the cladding material: in certain conditions hydrogen in solid solution might cause material softening through a mechanism known as hydrogen enhanced localized plasticity (HELP).
With the goal of determining the conditions necessary to activate the HELP effect in zirconium alloys, samples have been evaluated by different micro-mechanical and macro-mechanical techniques. Results highlight the importance of the interplay between solid solution hydrogen and hydrides on the hardness and yield point of the tested materials.
MC-EBIS-ICP-MS – a unique dual Ion Source Mass Spectrometer
This highlight presents a successful, in-house developed integration of an Electron Beam Ion Source (EBIS) able to ionize gases to high charge states with a customized commercial MC-ICP-MS. The successful joining of the two ion flight paths is a milestone towards comprehensive routine analyses of solids, liquids, and gases using THE SAME MASS SPECTROMETER, the latter analyses free from atmospheric contamination. After implementation of an introduction system for gas mass spectrometry, routine analyses will comprise isotope ratio and relative abundance determinations of fission gases in used nuclear fuel. In addition to the unique versatility of the MC-EBIS-ICP-MS, inclusion of the EBIS furthers opens the little-studied field of mass spectrometry of highly charged ions.
New element and speciation specific analytical options at AHL
The Hot Laboratory division (AHL) within PSI’s Nuclear Energy and Safety (NES) division continually upgrades and advances its analytical infrastructure to provide cutting-edge scientific service to PSI’s researchers and industrial customers. A new, fully automatable and highly flexible Ion Chromatograph (IC) furthers AHL’s efforts in sample miniaturization and extends the spectrum of destructive analytical capabilities to element and speciation specific analyses. With the new IC and its modern ICP-MS (Inductively Coupled Plasma Mass Spectrometry) facilities, AHL offers innovative scientific options for nuclear and general research. Moreover, speciation analyses by IC-ICP-MS for polyvalent inorganic water pollutants such as Cr or As and the acquisition of a new ICP-OES system (Inductively Coupled Plasma Optical Emission Spectrometry) enable future autonomy in wastewater management.
Used Nuclear Fuel: from Better Characterization to Better Optimization
A safe, economical and environmental friendly disposal of used nuclear fuel represents an essential objective of relevance for all. This guides the approach under development at the laboratory for reactor physics and thermal-hydraulics. Establish higher resolution simulation methods to gain more detailed knowledge on the content of each single nuclear fuel rod ever irradiated in a reactor. Thereafter, use this knowledge to explore optimization approaches that could potentially enlarge the range of disposal options allowing to fulfill the highest level of safety standards while reducing economical costs and geological footprints at the same time.
Hydrogen uptake into Zr-based fuel claddings
At the hot surface of a fuel rod cladding in the reactor water, the water is partially dissociated in hydrogen and oxygen, leading to corrosion of the cladding and to the uptake of a part of the created hydrogen. Hydrogen in solid solution and in precipitated form changes the mechanical properties of the cladding tube. The uptake of the hydrogen through the dense oxide layer is unclear. The structure and physical properties of the oxide near the metal-interface is critical The resistivity of the oxide increases with distance from the interface. Nb-containing alloys show lower resistivity in the oxide close to the metal interface, and exhibit a lower hydrogen pick-up. The time in the reactor is an important factor, leading to increasing resistivity in the oxide close to the metal interface, and a higher hydrogen uptake late in life.
Relevance of the findings: considering resistivity, the model of hydrogen uptake is better understood, revealing hints for further cladding development.
Hüllrohre und ihre Eigenschaften
Im Forschungsbereich für Nukleare Energie und Sicherheit am PSI beschäftigt sich Johannes Bertsch mit den sogenannten Hüllrohren, die in Kernkraftwerken zum Einsatz kommen.
Neue Betriebsbewilligung
Am 21. Februar 2019 erteilte das Eidgenössische Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK) die neue Betriebsbewilligung für die Anlage PSI Hotlabor
UO2 fuel behavior at very high burnup
The investigation of the nuclear fuel at very high burnup is critical for evaluating the safety margin for the evaluated fuel in normal as well as in accidental conditions. PSI is one of the very few hot laboratories which possess access to irradiated UO2 fuel with very high burnup from commercial reactors. The application of relevant tools for the investigation, handling and analysis of those highly irradiated materials emphasize the necessary expertise.
New Focused Ion Beam (FIB) in the Hot Laboratory
The implementation of Focused Ion Beam instruments in material research laboratories during the last decade has not only strongly improved the preparation of very thin specimens for the Transmission Electron Microscope (TEM), in particular at interfaces, but also led to the development of new analysis methods inside the instrument itself. It became a powerful instrument for the analyses of highly radioactive materials, because it allows for the production and analysis of very small specimens that can be then analyzed with very sensitive detectors without strong interference from the radiation field of the specimen itself.
Refurbishment of HZ6
The hot cell 6 is dedicated to the storage and conditioning of high level solid waste. This cell has been completely refurbished in the period 2015 – 2017. This include the complete dismantling and conditioning of the highly fuel contaminated old infrastructure, the cleaning of the cell and the installation and test of the new improved infrastructure.
Pt nanoparticles: The key to improved stress corrosion cracking mitigation in boiling water reactors
The formation and growth of cracks by stress corrosion cracking (SCC)in reactor internals and recirculation pipes due to the highly oxidising environment is a serious issue in boiling water reactors. At first, SCC mitigation was attempted by injecting H2 into the feed water, where the injected H2 recombines with the H2O2 and O2 to water and reduces the electrochemical corrosion potential, and consequently the SCC susceptibility. Several disadvantages of the injection of high amounts of H2, have led to the development of noble metal additions to the reactor feed water. With injection of a much smaller amount of H2, the noble metal particles of a few nanometres in size, formed in-situ, work as catalysts for the efficient reduction of the oxidizing species formed by radiolysis, and thus lower the ECP and SCC susceptibility.
New Sample and Task Management Software
The AHL accounts, according to internal as well as external regulations, nuclear materials and moderators. For the detection and control of nuclear fuel samples and monitoring with respect to criticality safety, AHL developed a new sample and task management software (IPV).
New sewage cleaning system and tank farm
PSI Hotlab is collecting and radiologically cleaning the entire radioactive waste water from the PSI East side. In the years 2014-2016 a major refurbishment took place, where the old tank farm was decommissioned, and new stainless-steel tanks were installed together with new, modern ultrafiltration systems during normal operation of the lab.
Die Forschungsanlage Hotlabor
Start der öffentlichen Auflage für eine Erneuerung der Betriebsbewilligung der Forschungsanlage Hotlabor am Paul Scherrer Institut PSIDas Hotlabor am Paul Scherrer Institut PSI ist eine Anlage, in der Forscherinnen und Forscher hoch radioaktive Materialien in speziellen abgeschirmten Kammern – die Hotzellen oder auch Heisse Zellen genannt werden – untersuchen. Die Anlage ist in der Schweiz einzigartig. Sie dient der angewandten Materialforschung an stark radioaktiven Proben aus Kerneinbauten und Brennstäben von Kernkraftwerken, Forschungsreaktoren und den PSI-Bestrahlungseinrichtungen. Mit dem Betrieb des Hotlabors leistet das Paul Scherrer Institut daher auch einen Beitrag zur Sicherheit der Schweizer Kernkraftwerke. Rund 32 Mitarbeitende betreuen die sicherheitstechnische und analytische Infrastruktur des Hotlabors.
Wasserstoff: ein trojanisches Pferd im Brennstab-Hüllrohr
In Kernreaktoren wird an den heissen Brennelementen Wasser aufgespalten, wobei Wasserstoff entsteht. Der Wasserstoff kann in das Hüllrohr, das den eigentlichen Brennstoff umgibt, eindringen und dieses mechanisch schwächen. Forschende des Paul Scherrer Instituts PSI untersuchen mit Hilfe von Neutronen und Synchrotronstrahlung, wie der Wasserstoff ins Hüllrohr kommt, und welche Wirkung er darin entfalten kann.
Eine runde Sache für weniger nuklearen Abfall
Bereits in den 1960er Jahren entstand die Idee, die Brennstoffe für Kernkraftwerke in Form von dicht gepackten Kugeln statt der heutigen üblichen Pellets herzustellen. Man versprach sich davon eine Vereinfachung der Brennstoffherstellung sowie eine deutliche Verminderung der radioaktiven Abfallmenge sowohl bei der Herstellung des Brennstoffs selbst als auch nach dessen Nutzung in einem Kernkraftwerk. Der kugelförmige Brennstoff kam jedoch nie zum Einsatz, weil sich die schnellen Reaktoren, für die er vorgesehen war, nicht durchsetzen konnten. Auch das Paul Scherrer Institut PSI trug in der Vergangenheit zur Erforschung des kugelförmigen Kernbrennstoffes bei. Zurzeit laufen am PSI wieder mehrere, zum Teil EU-finanzierte Projekte, um die Herstellung der Brennstoffkügelchen weiter zu verfeinern. Zum Einsatz kommen könnte diese Art von Brennstoff entweder in speziellen Anlagen zur Reduktion von radioaktivem Abfall (sogenannten ADS-Anlagen) oder in schnellen Reaktoren der vierten Generation, die in einem geschlossenen Zyklus ebenfalls weniger langlebigen Abfall produzieren.
Wie Radionuklide durchs Gestein irren: Erkenntnisse für ein Tiefenlager
Wie bewegen sich radioaktive Substanzen durch das Wirtsgestein in einem Tiefenlager für nukleare Abfälle? Dieser Frage gehen Forscher der Gruppe für Diffusionsprozesse im Labor für Endlagersicherheit am Paul Scherrer Institut PSI nach. Recht gut bekannt sind die Transporteigenschaften von negativ geladenen Radionukliden, die von den ebenfalls negativ geladenen Oberflächen von Tonmineralien abgestossen werden und somit kaum am Gestein haften. Für positiv geladene und daher stark haftende Radionuklide werden derzeit die entsprechenden Erkenntnisse im Rahmen eines EU-Projekts erarbeitet, an dem sich auch das PSI beteiligt.
Wissen für morgen aus den „heissen Zellen“
Die Manipulation und Untersuchung von bestrahlten und daher radioaktiven Materialien, sei es aus Kernkraftwerken oder aus Forschungsanlagen, erfordert strenge Sicherheitsvorkehrungen. Untersuchungen dürfen nur in sogenannten heissen Zellen durchgeführt werden, hinter deren bis zu einem Meter dicken Beton- und Bleiwänden die Radioaktivität hermetisch eingeschlossen und abgeschirmt wird. In den heissen Zellen des Hotlabors am PSI werden regelmässig die abgebrannten Brennstäbe aus den Schweizer Kernkraftwerken materialwissenschaftlich untersucht. Die gewonnenen Erkenntnisse helfen den KKW-Betreibern, die Effizienz und Sicherheit ihrer Kraftwerke zu optimieren. Neben dieser Dienstleistung für die Kernkraftwerke beteiligt sich das Hotlabor an internationalen Forschungsprojekten.
Zuverlässige Materialien für Kernreaktoren
Materialien, die in Kernkraftwerken eingesetzt werden, sind hohen Anforderungen ausgesetzt. Die Sicherheitsstandards bezüglich Materialauswahl, -einsatz und -überwachung sind sehr hoch. Am PSI wird das Verhalten von langzeitig eingesetzten Teilen untersucht. So interessieren sich die Forschenden für die Bedeutung von Spannungsrisskorrosion in Werkstoffen oder die Auswirkung starker radioaktiver Strahlung auf deren Haltbarkeit.
Sichere Endlagerung - Untersuchung spezifisch schweizerischer Gegebenheiten
Radioaktive Abfälle aus Kernkraftwerken sowie aus Medizin, Industrie und Forschung müssen über sehr lange Zeit von der Umwelt und insbesondere dem Lebensraum der Menschen ferngehalten werden. Fachleute am PSI befassen sich seit Jahren mit wissenschaftlichen Fragen zum Sicherheitsnachweis für geologische Endlager. Die PSI-Forschung widmet sich vor allem den physikalisch-chemischen Vorgängen in Endlagersystemen. Sie will zu einer realistischen Beschreibung der mit der Lagerung radioaktiver Abfälle verbundenen Risiken gelangen.