Dr. Anke Neumann Jenal

Kurzbeschreibung
Group Leader Clay Minerals and Environmental Geochemistry
Picture of Anke Neumann
Téléphone
Institut Paul Scherrer PSI
Forschungsstrasse 111
5232 Villigen PSI
Suisse

Anke Neumann's main research interests are mineral redox reactions and how these processes affect metal(loid)s, radionuclides, and organic contaminants. Her work spans the broad range from understanding fundamental mechanisms of electron transfer at the mineral-water interface to application of redox processes for contaminant transformation or removal, both in natural and engineered environments. A particular focus within Anke's research are iron-bearing clay minerals and Mössbauer spectroscopy.

2024-dateGroup Leader, LES
2022-2023Humboldt Research Fellowship for Experienced Researchers, GFZ German Research Centre for Geosciences, Germany
2021Visiting Researcher, GFZ German Research Centre for Geosciences, Germany
2020-2023Senior Lecturer, Newcastle University, UK 
2013-2020Lecturer, Newcastle University, UK
2011-2013Postdoctoral Research Scholar, University of Iowa, USA
2011Postdoctoral Research Scientist, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Switzerland
2009-2011Independent Postdoctoral Research Scientist (part-time: 50% FTE), Bangladesh; in cooperation with: Eawag, Switzerland; George Mason University, USA
2008-2009Postdoctoral Research Scientist, Swiss Federal Institute of Technology (ETH Zürich), Switzerland
2008    Doctor of Sciences (Dr. sc. ETHZ); ETH Zürich, Switzerland
2004    Master in Chemistry (Dipl. Chem. ETHZ); ETH Zürich, Switzerland
2001    Vordiplom in Chemistry; University of Rostock, Germany 
2022-2023 Humboldt Research Fellowship for Experienced Researchers
2015-2017   EPSRC Bright Ideas Award
2012-2013   Postdoctoral Fellowship from the German Research Foundation (DFG)
2011-2012    Postdoctoral Fellowship from the Swiss National Science Foundation (SNSF)

 

 

new projects will follow soon

  • Abdullayev E, Paterson JR, Kuszynski EP, Hamidi MD, Nahar P, Greenwell HC, et al.
    Evaluation of the antibacterial properties of commonly used clays from deposits in central and southern Asia
    Clays and Clay Minerals. 2024; 72: e9 (12 pp.). https://doi.org/10.1017/cmn.2024.7
    DORA PSI
  • Marsh ATM, Brown AP, Freeman HM, Neumann A, Walkley B, Pendlowski H, et al.
    Mineralogical characteristics influence the structure and pozzolanic reactivity of thermally and mechano-chemically activated meta-kaolinites
    Journal of Materials Chemistry A. 2024; 12(36): 24260-24277. https://doi.org/10.1039/d4ta02545h
    DORA PSI
  • Pothanamkandathil V, Neumann A, Thompson A, Gorski CA
    Redox properties of structural Fe in clay minerals: 4. Reinterpreting redox curves by accounting for electron transfer and structural rearrangement kinetics
    Environmental Science and Technology. 2024; 58: 19702-19713. https://doi.org/10.1021/acs.est.4c07835
    DORA PSI

Publications authored pre-PSI

Rothwell KA, Pentrak MP, Pentrak LA, Stucki JW, Neumann A. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. Environmental Science & Technology 2023, 57, 10231-10241. doi: 10.1021/acs.est.3c01655  

Vasilopanagos C, Carteret C, Hillier S, Neumann A, Brooksbank HJL, Greenwell HC. Effect of Structural Fe Reduction on Water Sorption by Swelling and Non-Swelling Clay Minerals. Minerals 2022, 12, 4, 453. doi: 10.3390/min12040453

Stagg O, Morris K, Lam A, Navrotsky A, Velázquez JM, Schacherl B, Vitova T, Rothe J, Galanzew J, Neumann A, Lythgoe P, Abrahamsen-Mills L, Shaw S. Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite Environmental Science & Technology 2021, 55, 24, 16445–16454.doi: 10.1021/acs.est.1c06197  

Cheng D, Neumann A, Yuan SH, Liao WJ, Qian A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O2Environmental Science & Technology 2020, 54, 7, 4091-4101. doi: 10.1021/acs.est.9b07012  

Wang J, Tsai, M-C, Lu Z, Li Y, Huang G, Wang H, Liu H, Liao X, Hwang B-J, Neumann A, Yang X. pH-dependent structure-activity relationship of Polyaniline-intercalated FeOCl for heterogeneous Fenton reactions. ACS Omega 2019, 4, 26, 21945-21953. doi:10.1021/acsomega.9b03008  

Entwistle J, Latta DE, Scherer MM, Neumann A. Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates. Environmental Science & Technology 2019, 53, 24, 14308-14318. doi: 10.1021/acs.est.9b04665  

Notini L, Latta DE, Neumann A, Pearce, CI, Sassi M, N’Diaye AT, Rosso KM, Scherer MM. A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry 2019, 3, 2717–2725. doi:10.1021/acsearthspacechem.9b00224

Culpepper JD, Scherer MM, Robinson TC, Neumann A, Cwiertny D, Latta DE. Reduction of PCE and TCE by Magnetite Revisited. Environmental Science: Processes and Impact 2018, 20, 1340-1349. doi:10.1039/C8EM00286J 

Notini L, Latta DE, Neumann A, Pearce CI, Sassi M, N’Diaye AT, Rosso KM, Scherer MM. The Role of Defects in Fe(II)-Goethite Electron Transfer. Environmental Science & Technology 2018, 52(5), 2751–2759. doi:10.1021/acs.est.7b05772  

Huhmann BL, Neumann A, Boyanov MI, Kemner KM, Scherer MM. As(V) in Magnetite: Incorporation and Redistribution. Environmental Science: Processes and Impact 2017, 19, 1208-1219. doi:10.1039/C7EM00237H 

Qafoku O, Pearce C, Neumann A, Kovarik L, Zhu M, Ilton E, Bowden M, Resch C, Arey B, Arenholz E, Felmy A, Rosso K. Tc(VII) and Cr(VI) Interaction with a Naturally Reduced Ferruginous Smectite from the Hanford Redox Transition Zone. Environmental Science & Technology 2017, 51 (16), 9042–9052. doi:10.1021/acs.est.7b02191

Latta DE, Neumann A, Premaratne WAPJ, Scherer MM. Fe(II)-Fe(III) electron transfer in a clay mineral with low Fe content. ACS Earth and Space Chemistry 2017, 1 (4), 197–208. doi:10.1021/acsearthspacechem.7b00013

Neumann A, Wu L, Li W, Beard BL, Johnson CM, Rosso KM, Frierdich AJ, Scherer MM. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Environmental Science & Technology 2015, 49(5), 2786–2795. doi:10.1021/es504984q

Handler RM, Frierdich AJ, Johnson CM, Rosso KM, Beard BL, Wang C, Latta DE, Neumann A, Pasakarnis T, Premaratne WAPJ, Scherer MM. Fe(II)-Catalyzed Recrystallization of Goethite Revisited. Environmental Science & Technology 2014, 48(19), 11302–1131. doi:10.1021/es503084u

Neumann A, Kaegi R, Voegelin A, Hussam A, Munir AKM, Hug SJ. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environmental Science & Technology 2013, 47(9), 4544-4554. doi:10.1021/es305176x

Alexandrov V, Neumann A, Scherer MM, Rosso KM. Electron Exchange and Conduction in Nontronite from First-Principles. Journal of Physical Chemistry C 2013, 117(5), 2032-2040. doi:10.1021/jp3110776

Neumann A, Olson TL, Scherer MM. Spectroscopic Evidence for Fe(II)–Fe(III) Electron Transfer at Clay Mineral Edge and Basal Sites. Environmental Science & Technology 2013, 37(13), 6969-6977. doi:10.1021/es304744v

Neumann A, Petit S, Hofstetter TB. Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta 2011, 75(9), 2336-2355. doi:10.1016/j.gca.2011.02.009

Neumann A, Hofstetter TB, Skarpeli-Liati M, Schwarzenbach RP. Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology 2009, 43(11), 4082-4089. doi:10.1021/es9001967

Neumann A, Hofstetter TB, Lüssi M, Cirpka OA, Petit S, Schwarzenbach RP. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environmental Science & Technology 2008, 42(22), 8381-8387. doi:10.1021/es801840x

Hofstetter TB, Neumann A, Arnold WA, Hartenbach AE, Bolotin J, Cramer CJ, Schwarzenbach RP. Substituent effects on nitrogen isotope fractionation during abiotic reduction of nitroaromatic compounds. Environmental Science & Technology 2008, 42(6), 1997-2003. doi:10.1021/es702471k 

Hofstetter TB, Neumann A, Schwarzenbach RP. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology 2006, 40(1), 235-242. doi:10.1021/es0515147

Neumann A, Sander M, Hofstetter TB. Redox Properties of Structural Fe in Smectite Clay Minerals. In: Tratnyek, PG; Grundl, TJ; Haderlein, SB, ed. Aquatic Redox Chemistry. Washington DC: American Chemical Society, 2011, pp.361-379. doi:10.1021/bk-2011-1071.ch017