The Zuoz school’s 26th edition
26th Zuoz Summer School on particle physics took place at the Lyceum Alpinum with close to 100 participants.
Précision unique: nouvelle valeur pour la demi-vie du samarium-146
Des scientifiques du PSI et de l’Université nationale australienne ont déterminé la demi-vie du samarium 146 avec une très grande précision.
Un plan pour la plus grande machine du monde
Entretien avec Lea Caminada, cheffe du groupe Physique des hautes énergies au PSI, concernant le potentiel du prochain grand projet au CERN.
«Au niveau de la concurrence internationale, IMPACT est une mise à niveau très importante»
Daniela Kiselev nous parle de la mise à niveau prévue à l'accélérateur de protons du PSI.
La chasse au rayon du proton
0,000 000 000 000 000 840 87 (39) mètre: c’est le nombre étonnant que des chercheuses et des chercheurs au PSI ont découvert pour le rayon d’un proton.
Une mission sur Jupiter pour explorer les conditions favorables à la vie
Ganymède, Callisto et Europe sont trois lunes glacées de Jupiter et la destination de la mission de l’ESA, qui emporte à bord un détecteur high-tech du PSI.
Développer soi-même ce qui est introuvable dans le commerce
Les scientifiques du PSI développent tout simplement eux-mêmes nombre de composants nécessaires à leurs expériences.
Plus de lumière dans l’obscurité
Au PSI, les chercheurs veulent combler les dernières lacunes du modèle standard de la physique à l'aide des grandes installations de recherche.
«Un joyau dont il faut prendre soin»
HIMB est l'une des deux parties de l'upgrade IMPACT. Klaus Kirch nous parle des plans.
Double upgrade pour l’accélérateur de protons
Dès 2025, HIPA doit bénéficier d’un double upgrade. Les préparatifs à cet effet sont en cours.
Financement de 2 millions pour la quête d’une nouvelle physique
Philipp Schmidt-Wellenburg mettra sur pied une expérience inédite à une ligne de faisceau de muons du PSI.
L’Infrastructure suisse pour la physique des particules CHRISP
Les chercheurs recherchent les écarts par rapport au modèle standard actuel de la physique et veulent savoir comment notre univers est construit.
La taille du noyau d’hélium a été mesurée avec une précision inégalée
Dans le cadre d’expériences conduites à l’Institut Paul Scherrer PSI, une collaboration internationale de recherche a mesuré le rayon du noyau de l’atome d’hélium de manière cinq fois plus précise que tous les chercheurs avant elle. Ce nouveau résultat permet de tester certaines théories fondamentales en physique.
Isolé du monde par blindage magnétique
A l’Institut Paul Scherrer PSI, des chercheurs ont construit une chambre magnétiquement isolée du reste du monde dont les performances sont uniques au niveau planétaire. Leur objectif est de résoudre l’une des dernières énigmes sur l’origine de la matière et de répondre à la question fondamentale: pourquoi la matière, et par conséquent l’homme, existent-ils au sein de l’univers?
A la recherche d’une nouvelle physique
L’accélérateur de protons à haute intensité HIPA permet à l’Institut Paul Scherrer PSI de produire des particules élémentaires pour élucider la structure de notre univers. Les chercheurs utilisent des pions, des muons et des neutrons pour vérifier la validité du modèle standard de la physique des particules.
De l’hélium pionique avec une longue durée de vie: première preuve expérimentale de l’existence d’une matière exotique
Les atomes exotiques, où des électrons ont été remplacés par d’autres particules, permettent de scruter en profondeur l’univers quantique. Au terme de huit ans de travail, une équipe internationale de chercheurs a réussi une expérience difficile à la source de pions du PSI: créer un atome artificiel appelé «hélium pionique».
Sur la piste de l’énigme de la matière
A la source de neutrons ultra-froids du PSI, des chercheurs ont mesuré une propriété du neutron avec une précision inégalée à ce jour: son moment dipolaire électrique. Aujourd’hui encore, on cherche en effet à comprendre pourquoi il est apparu plus de matière que d’antimatière après le Big Bang.
Un matériau produit au PSI permet de mettre à l'épreuve certaines irrégularités de la théorie du Big Bang
Le Big Bang a été immédiatement suivi de l'apparition d'atomes de type béryllium 7. Dans tout l'univers, la plupart de ces atomes se sont désintégrés depuis belle lurette. Un échantillon de béryllium 7, produit artificiellement au PSI, vient d'aider les chercheurs à mieux comprendre les premières minutes de l'univers.
Le travailleur de force du val Mesolcina
Aldo Antognini a la physique et la convivialité dans le sang. Aldo Antognini, chercheur au PSI, a reçu plus de 2 200 000 francs de l’UE pour sa nouvelle expérience. Son objectif: déterminer la répartition du magnétisme dans le proton. Pour y arriver, ce physicien des particules devra mettre ses talents scientifiques et techniques à contribution, mais aussi son entregent.
500 000 fois moins probable que de gagner au loto
La rareté d’une désintégration de particules a été mesuréeDans le cadre de l’expérience MEG, des chercheurs du PSI sont à la recherche d’une voie de désintégration extrêmement rare de certaines particules élémentaires appelées muons. Pour être plus précis, ils chiffrent cette improbabilité. Leur tout dernier résultat: cette désintégration se produit dans moins d’un cas sur 2,4 milliards. Ce résultat permet aux physiciens théoriciens de trier, parmi les hypothèses visant à décrire l’univers, celles qui résistent à la confrontation avec la réalité.
Mesurer la simultanéité
Que fait un physicien lorsque son expérience nécessite un chronométrage d’une extrême précision? D’une précision telle que l’électronique existante n’est pratiquement d’aucun secours? Un chercheur de l’Institut Paul Scherrer PSI a décidé sans autre forme de procès de développer lui-même une solution: sa puce électronique de haute précision, baptisée DRS4, pourrait bien permettre de déchiffrer les lois physiques qui gouvernent notre univers tout entier. Incidemment, elle permet aujourd’hui déjà aux médecins de localiser des tumeurs cérébrales de manière extrêmement précise.
Une nouvelle méthode va permettre de mesurer les neutrons avec une précision inédite
Notre univers est composé de nettement plus de matière que ce que les théories actuelles permettent d’expliquer. Ce fait représente l’une des grandes énigmes de la science moderne. Une manière de clarifier cette dissension passe par ce qu’on appelle le moment dipolaire électrique du neutron. Dans le cadre d’une coopération internationale, des chercheurs du PSI ont développé une nouvelle méthode pour aider à déterminer plus précisément ce moment dipolaire.
L'accélérateur de protons du PSI : 40 ans de recherche de pointe
Teaser: Recherche sur les matériaux, physique des particules, biologie moléculaire, archéologie : depuis 40 ans, le grand accélérateur de protons de l’Institut Paul Scherrer (PSI) rend possible de la recherche de pointe dans différents domaines.
Des cas rares de désintégration de particules appuient le modèle standard
A partir de données mesurées au détecteur CMS au CERN, des chercheurs de l’Institut Paul Scherrer ont observé pour la première fois, avec une certitude suffisante, le cas rare de la désintégration du méson Bs en deux muons. Ils ont également déterminé sa fréquence. Leurs résultats coïncident avec les prédictions du modèle standard de la physique des particules.
Une désintégration décisive
Un processus extrêmement rare devrait déterminer quelle sera, à l’avenir, la théorie la plus adéquate pour décrire notre univers. Ce processus, c’est une désintégration bien particulière d’un type de particule élémentaire : les muons. Ces particules ne vivent guère longtemps et se désintègrent en d’autres particules différentes. Alors qu’un modèle théorique interdit pratiquement un processus bien particulier de désintégration des muons, un autre modèle théorique l’autorise. Quelle théorie est la bonne ? Des physiciens de l’Institut Paul Scherrer ont fait un pas en avant dans cette énigme, grâce à l’observation extrêmement précise de plusieurs centaines de milliards de désintégrations. Ils ont publié leurs résultats dans la revue spécialisée « Physical Review Letters ».
PSI inside
« La découverte du boson de Higgs » a été relayée dans tous les médias début juillet 2012. Aux yeux de Roland Horisberger, physicien des particules au PSI, cette annonce était prématurée : « Il faudra certainement compter encore cinq ans avant que l’on puisse affirmer avec certitude que le boson de Higgs a bel et bien été découvert, souligne-t-il. Quelle que soit l’issue de cette quête à qu’il s’agisse du boson de Higgs, ou d’une particule « semblable au boson de Higgs », telle qu’elle est décrite dans certaines théories à les résultats pourront être estampillés en grandes lettres « PSI inside ».
Une nouvelle énigme du proton
Une équipe de recherche internationale a confirmé, par des mesures de spectroscopie laser sur l’hydrogène exotique, que la taille du proton était bien plus petite que prévue. L’expérience a eu lieu à l'institut Paul Scherrer (PSI). Le PSI est à présent le seul centre de recherche au monde à produire un nombre suffisant de muons pour fabriquer des atomes d’hydrogène exotiques à partir de protons et de muons et d'effectuer de telles recherches.
Le côté faible du proton
Une équipe de recherche internationale a déterminé avec une grande précision la participation du proton à l’interaction faible (une des quatre forces fondamentales de la nature). Les résultats confirment les prédictions théoriques du modèle standard de la physique des particules. Lors de l'expérience, il a été mesuré la probabilité de capture des muons par des protons. Ce processus est gouverné par l’interaction faible. L'expérience a été réalisée à l'Institut Paul Scherrer PSI, le seul endroit au monde produisant suffisamment de muons pour permettre une expérience sur une durée raisonnable.
Beobachtung eines neuen Teilchens mit einer Masse von 125 GeV
In einem gemeinsamen Seminar am CERN und bei der ICHEP 2012 Konferenz in Melbourne haben Wissenschaftler des Compact Muon Solenoid Experiments (CMS) heute ihre vorläufigen Ergebnisse der Suche nach dem Higgs Boson des Standardmodells (SM) mit den bis Juni 2012 genommenen Daten vorgestellt.Cette actualité n'existe qu'en anglais et allemand.
Erkenntnis aus dem Nichts
Zwei Experimente mit massgeblicher Beteiligung von Forschern des Paul Scherrer Instituts PSI liefern wichtige Ergebnisse bei der Suche nach der richtigen Beschreibung der Welt der kleinsten Teilchen. In den Experimenten haben die Physiker nach sehr seltenen Teilchenzerfällen gesucht. In beiden Fällen konnte der gesuchte Zerfall nicht beobachtet werden wodurch bestimmte Modelle der Teilchenphysik ausgeschlossen werden konnten.Cette actualité n'existe qu'en allemand.