Energiewende

Abkehr von der Kernenergie, Ausbau von Solar- und Windkraft, Energiegewinnung aus Biomasse, Senkung des Energieverbrauchs. Bis 2050 soll die Schweiz klimaneutral werden. Ein ehrgeiziges Ziel, welches durch die zunehmend herausfordernde geopolitische Lage dringlicher denn je geworden ist. Wie lässt sich in den nächsten Jahren eine nachhaltige und widerstandsfähige Energieversorgung für die Schweiz aufbauen? Wie können erneuerbare Energien optimal genutzt werden? Welche neuen Technologien sind besonders vielversprechend? Am PSI suchen Forschende nach Antworten auf diese entscheidenden Fragen.

Creation and deletion of isolated magnetic skyrmions via electrical currents

The writing and deletion of magnetic Skyrmions is a fundamental step towards the fabrication of memory devices based on this promising spin configuration. Researchers at the Korea Institute of Technology have demonstrated the writing and deleting of isolated magnetic Skyrmions at room temperature in ferrimagnetic multilayer superlattice stacks using electrical currents.

Evolution of temperature for different cases.

Global Sensitivity Analysis and Registration Strategy for Temperature Profiles of Reflood Experiment Simulations

Global sensitivity analysis (GSA) is routinely applied in engineering to determine the sensitivity of a simulation output to the input parameters. Typically, GSA methods require the code output to be a scalar. In the context of thermal-hydraulic system code, however, simulation outputs are often not scalar but time-dependent (e.g. temperature profile). How to perform GSA on these outputs?

Spinon dispersion without applied magnetic field (left), showing eight Dirac cones, and with an in-plane field (right). In the latter case, two pairs of Dirac cones remain (taken from Ref. 1).

A theory for the gapless field-induced quantum spin-liquid phase of α−RuCl3

The material α−RuCl3 continues to garner attention as the current poster child for realising the Kitaev model. New work places recent experimental observations on a solid theoretical footing, and concludes that the physics of α−RuCl3 is not dominated by Kitaev interactions.

Cover Page.jpg

Fresnel Zone Plates with Zone Widths below 10 nm

The spot size of a Fresnel Zone Plate lens is mainly determined by the zone widths of its outermost zone. It is therefore essential to fabricate zone plates with structures as small as possible for high-resolution X-ray microscopy. Researchers at the Laboratory for Micro- and Nanotechnology at the PSI have now developed Fresnel zone plates with zone widths well below 10 nm, down to 6.4 nm. These lenses are capable of pushing resolution in X-ray microscopy to the single-digit regime.

Topological quantum phase transition in the Ising-like antiferromagnetic spin chain BaCo2V2O8

Since the seminal ideas of Berezinskii, Kosterlitz and Thouless, topological excitations have been at the heart of our understanding of a whole novel class of phase transitions. In most cases, those transitions are controlled by a single type of topological objects. There are, however, some situations, still poorly understood, where two dual topological excitations fight to control the phase diagram and the transition.

Observation of two types of fractional excitation in the Kitaev honeycomb magnet

Quantum spin liquid is a disordered but highly entangled magnetic state with fractional spin excitations. The ground state of an exactly solved Kitaev honeycomb model is perhaps its clearest example. Under a magnetic field, a spin flip in this model fractionalizes into two types of anyon, a quasiparticle with more complex exchange statistics than standard fermions or bosons: a pair of gauge fluxes and a Majorana fermion.

capdevila_prl_t.jpg

Searching for New Physics with b → sτ+τ-

In recent years, intriguing hints for the violation of lepton flavor universality (LFU) have been accumulated in semileptonic B decays, both in the charged-current transitions b → cl-ν-l (i.e., RD, RD∗, and RJ/Ψ and the neutral-current transitions b → sl+l- (i.e., RK and RK∗.

ORNLteaser.jpg

Spin ice goes quantum

Numerous intriguing behaviours have been observed already in magnetic materials known as spin ices. But now for the first time direct manifestations of quantum mechanical effects have been seen in such a system.

Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

Motivated by recent experimental observations in α-RuCl3, we study the Κ-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation.

Experimental signatures of emergent quantum electrodynamics in Pr2Hf2O7

In a quantum spin liquid, the magnetic moments of the constituent electron spins evade classical long-range order to form an exotic state that is quantum entangled and coherent over macroscopic length scales. Such phases offer promising perspectives for device applications in quantum information technologies, and their study can reveal new physics in quantum matter.

Structure and Interaction of Nanoparticle–Protein Complexes

The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules.

Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering

The ligand shell (LS) determines a number of nanoparticles’ properties. Nanoparticles’ cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random).

No-Go Theorem for Nonstandard Explanations of the τ → KSπντ CP Asymmetry

The CP asymmetry in τ → KSπντ, as measured by the BABAR collaboration, differs from the standard model prediction by 2.8 σ. Most nonstandard interactions do not allow for the required strong phase needed to produce a nonvanishing CP asymmetry, leaving only new tensor interactions as a possible mechanism.

A first glance at the SwissFEL x-rays wave-front

X-ray Free Electron Lasers (XFELs) combine the properties of synchrotron radiation (short wavelengths) and laser radiation (high lateral coherence, ultrashort pulse durations). These outstanding machines allow to study ultra-fast phenomena at an atomic level with unprecedented temporal resolution for answering the most intriguing open questions in biology, chemistry and physics.

Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ∼5T.

Klaus poster 3.jpg

HERCULES School Poster Prize

Klaus Wakonig was awarded the best poster prize in the 2018 rendition of the HERCULES European School in Grenoble, France. Klaus is currently a PhD student at the CXS group at PSI, developing X-ray Fourier ptychography.

Schematic representation of the active state of a Pt-Ni bimetallic nano-particle on the silica surface with unreduced nickel ions in/on silicates of the support.

Active Sites of supported bimetallic nano-Catalysts

Dynamic Structural Changes of Active Sites in Pt–Ni Bimetallic Catalysts Revealed by a Multimodal Approach

psi structures gradient.jpg

Outstanding high gradient performances of two test structures produced at PSI for the CLIC project

X-band (12 GHz) radio-frequency (RF) accelerating structures are under consideration for future free electron lasers, medical linacs and linear colliders. Two such structures, built by PSI in the framework of a CERN/PSI collaboration, are currently being tested at high power at CERN.

Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X = Se, S)

Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2Ti2O7.

Wengen18.jpg

Meeting on Mu3e detector integration in Wengen

We spent four days in Wengen, Switzerland going over the details of the Mu3e detector integration and discussing the procedures for producing the sub-detectors. Safety, powering, cooling, electronics and readout were also among the topics.

zach.jpg

Zachary Hodge successfully defends his PhD thesis on the Mu3e beam line design and monitoring

Zachary Hodge made extensive simulations for the Mu3e muon beam line at PSI, including some upgrade of the muon target E at PSI, which is supposed to improve the muon beam rate significantly. He co-developed a monitoring scheme using a scintillating target and a CCD camera for beam characterization and monitoring.

Dr. Caterina Biscari, Director of the ALBA Synchrotron in Spain and Vice Chair of LEAPS, League of European Accelerator-based Photon Sources, presented the LEAPS Strategy 2030 to Jean-David Malo, Director, Directorate General Research and Innovation, European Commission

LEAPS join forces with the European Commission to strengthen Europe’s leading role in science

“A world where European science is a catalyst for solving global challenges, a key driver for competitiveness and a compelling force for closer integration and peace through scientific collaboration.” This is the vision of LEAPS, League of European Accelerator-based Photon Sources, on which the LEAPS Strategy 2030 is based. Director Jean-David Malo, DG Research and Innovation, received the strategy today at the Bulgarian Presidency Flagship Conference on Research Infrastructures.

The interface between cementitious material and Opalinus Clay.

When man-made stones meet natural rocks – Shedding light on Mg-rich phases appearing at the interface between concrete and clay

Claystones and cement-based materials are key materials for safe disposal of radioactive waste in deep geological repositories. In Switzerland, Opalinus Clay, was selected as geological host material. At the Mont Terri rock laboratory the alteration of cement in contact with the natural clay is studied in a several years lasting experiment. The formation of different magnesium containing phases at the interface was studied using X-ray absorption micro-spectroscopy at the PHOENIX beamline of the Swiss Light Source (SLS).

Figure 2: 3 single shot spectra generated by SwissFEL

First Single-Shot SASE spectra of SwissFEL successfully measured

The team of the Laboratory for Advanced Photonics (LAP) has succeeded to perform the first set of shot-to-shot measurements of the SwissFEL generated spectrum.

Hercules PSI2.jpg

HERCULES at the Swiss Light Source

In the week of March 18-23 PSI welcomes 20 PhD students and postdocs taking part in the HERCULES 2018 school on Neutron and Synchrotron Radiation. They will attend lectures and perform two days of practical courses at several beam lines of the Swiss Light Source.

1st Zurich IDCN Career Forum

The International Dual Career Network (IDCN) is a non-profit organization formed through the collaboration of academic institutions, companies and NGOs with the purpose of facilitating the job search for mobile employees’ partners, and providing member companies access to a turnkey pool of talent. Since 2017, PSI is a corporate member of IDCN (Zurich Chapter).

Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10 – d0 cation mixing

A quantum spin liquid state has long been predicted to arise in spin-1/2 Heisenberg square-lattice antiferromagnets at the boundary region between Néel (nearest-neighbor interaction dominates) and columnar (next-nearest-neighbor interaction dominates) antiferromagnetic order. However, there are no known compounds in this region. Here we use d10 – d0 cation mixing to tune the magnetic interactions on the square lattice while simultaneously introducing disorder.