Data Science

Magnetic Cluster Excitations

Magnetic clusters, i.e., assemblies of a finite number (between two or three and several hundred) of interacting spin centers which are magnetically decoupled from their environment, can be found in many materials ranging from inorganic compounds and magnetic molecules to artificial metal structures formed on surfaces and metalloproteins.

A schematic of the setup employed for the experimental demonstration. X rays are focused and scatter off a test sample that can be displaced laterally with nanometer precision. The diffraction pattern produced by the scattered X rays is collected by a detector. The sample is reconstructed on a computer from the diffraction data (see other images).

Imaging fluctuations with X-ray microscopy

X-rays allow an inside look at structures that cannot be imaged using visible light. They are used to investigate nanoscale structures of objects as varied as single cells or magnetic storage media. Yet, high-resolution images impose extreme constraints on both the X ray microscope and the samples under investigation.

A scheme showing the LIFT process. The laser beam punching out an Alq3 pixel for transfer from the donor to the receiver substrate is shown in (a), and pair of electroluminescent pixels are shown with a bias applied in(b).

The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials.

Magnetic nano-chessboard. Upper part: Visualisation of the molecule using a scanning tunnel microscope; the molecular structure is indicated for two of the molecules. Lower part: Schematic representation of the self-assembly of the molecules; they fit together like pieces of a jigsaw puzzle and arrange themselves in a continuously alternating pattern.

Magnetic nano-chessboard puts itself together

Researchers from the Paul Scherrer Institute and the Indian Institute of Science Education and Research (Pune, India) have managed to ‘turn off’ the magnetization of every second molecule in an array of magnetized molecules and thereby create a ‘magnetic chessboard’. The magnetic molecules were so constructed that they were able to find their places in the nano-chessboard by themselves.

Spin ladders and quantum simulators for Tomonaga-Luttinger liquids

Magnetic insulators have proven to be usable as quantum simulators for itinerant interacting quantum systems. In particular the compound (C5H12N)2CuBr4 (for short: (Hpip)2CuBr4) was shown to be a remarkable realization of a Tomonaga-Luttinger liquid (TLL) and allowed us to quantitatively test the TLL theory.