Die Nukleation oder Neubildung von Partikeln in der Atmosphäre war bisher ein grosses Rätsel. Die Forschung ging bis vor kurzem davon aus, dass Schwefelsäure die zentrale Rolle für die Partikelbildung hat. Nur lieferten die Untersuchungen im Feld und im Labor bisher stets widersprüchliche Resultate: Im Labor waren wesentlich höhere Schwefelsäure-Konzentrationen notwendig als im Feld, damit eine Nukleation ablief. Nun haben die Forscher am Paul Scherrer Institut PSI in ihrer Smogkammer den Grund für diesen Widerspruch gefunden. Das wird die Klimaforschung einen entscheidenden Schritt weiterbringen.
Wolken haben entscheidenden Einfluss auf den Strahlungshaushalt der Erde und somit auch auf die Temperatur der Luft. Je dichter die Wolkendecke ist, desto besser kann sie verhindern, dass die auf der Erde vorhandene Wärme ins All entweicht. Andererseits verhindert die Wolkendecke aber auch das Vordringen der Wärme aus der Sonnenstrahlung auf die Erde. Je feiner die Wassertröpfchen sind, aus denen die Wolken bestehen, desto stärker abkühlend wirken diese auf das Klima, da sie das Sonnenlicht stärker zurück ins All reflektieren. Die Grösse dieser Tröpfchen wird wesentlich bestimmt durch die Anzahl bestimmter Partikel in der Atmosphäre, an denen sie sich bilden können. Je zahlreicher die Partikel sind, desto feiner sind die Wolkentröpfchen. Die Anzahl der Wolkentröpfchen-fähigen Partikel ist deshalb wichtig für die Klimaforschung.
Aber woher kommen überhaupt diese Partikel? Manche steigen von der Erde direkt in die Atmosphäre auf, etwa Pollen, Rückstände aus unvollständiger Verbrennung oder Seesalz aus der Gischt. Viele Partikel werden aber überhaupt erst in der Atmosphäre gebildet, was als Nukleation oder Neubildung von Partikeln bezeichnet wird. Wie das geschieht konnte man bisher nicht vollkommen klären. Man ging davon aus, dass Schwefelsäure die zentrale Rolle bei der Partikelbildung spielt. Nur lieferten die Untersuchungen im Feld und im Labor bisher stets vollkommen unterschiedliche Resultate: Im Labor waren wesentlich höhere Schwefelsäure-Konzentrationen notwendig als im Feld, damit eine Nukleation ablief.
Mechanismus der Partikelbildung enträtselt
Nun ist es Forschenden am Paul Scherrer Institut gelungen, den Mechanismus zu klären. In der sogenannten Smogkammer, in der Vorgänge in der Atmosphäre simuliert werden können, wurden Versuche mit Schwefeldioxid (SO2) und einem organischen Gas (Trimethylbenzol, TMB) durchgeführt. Unter Sonnenlicht entstand aus dem SO2 Schwefelsäure, das TMB oxidierte zu Verbindungen, die weniger flüchtig sind als das TMB selbst. Und siehe da: Kommen diese Oxidationsprodukte zusammen, erfolgt die Nukleation schon bei einer Schwefelsäure-Konzentration, die wesentlich geringer ist als wenn man Versuche mit Schwefelsäure allein durchführt. Der Konzentrationsbereich entspricht nun dem, den man in der Atmosphäre bei natürlichen Nukleationen vorfindet. So konnte nachgewiesen werden, dass entgegen der bisherigen Meinung nicht zwei Schwefelsäure-Moleküle für die Nukleation zuständig sind, sondern die Kombination eines Schwefelsäure-Moleküls mit einem organischen Molekül. Um welches organische Molekül es sich genau handelt, wissen die Wissenschaftler noch nicht, da es heute noch keine analytische Methode für den Nachweis gibt. Sie können aber dessen Konzentration aus dem Abbau des TMB, das der Vorläufer dieses organischen Moleküls ist, abschätzen.
Globales Simulationsmodell bestätigt Ergebnisse
Um diese Hypothese zu erhärten, hat die Universität Leeds den am PSI gefundenen Mechanismus in ihr Modell GLOMAP (Globales Modell von Aerosol-Prozessen) eingebaut. Und die Vermutungen der PSI-Forscher wurden erfüllt. Als die PSI-Daten in das Simulationsmodell einbezogen wurden, konnte der tatsächlich im Feld gemessene Verlauf der Konzentration von Partikeln mit zunehmender Höhe über dem Boden (Vertikalprofil) wesentlich realitätsgetreuer nachvollzogen werden als mit allen anderen bisher gängigen Ansätzen.
Die Ergebnisse werden in der Woche vom 18. Januar in der Online-Ausgabe der Zeitschrift der Amerikanischen Akademie der Wissenschaften (PNAS – Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht. Die Printausgabe des Magazins erscheint eine Woche später.
Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt / Ansprechpartner
Prof. Dr. Urs Baltensperger, Leiter des Labors für Atmosphärenchemie, Paul Scherrer Institut,Telefon: +41 56 310 24 08, E-Mail: urs.baltensperger@psi.ch [Deutsch, Englisch]
Dr. Josef Dommen, Paul Scherrer Institut, Leiter des Smogkammer-Projekts
Telefon: +41 56 310 2992, E-Mail: josef.dommen@psi.ch [Deutsch, Englisch]
Originalveröffentlichung
Evidence for the role of organics in aerosol particle formation under atmospheric conditionsAxel Metzger, Bart Verheggen, Josef Dommen, Jonathan Duplissy, Andre S. H. Prevot, Ernest Weingartner, Ilona Riipinen, Markku Kulmala, Dominick V. Spracklen, Kenneth S. Carslaw, and Urs Baltensperger
Proc. Natl. Acad. Sci. USA, 107 (2010),
www.pnas.org/cgi/doi/10.1073/pnas.0911330107