Die vielfältigen Eigenschaften von Materialien werden bestimmt durch die Art der Atome, aus denen sie bestehen, wie diese angeordnet sind und wie sie sich bewegen können. Auf dem Gebiet Zukunftstechnologien wollen die Forschenden des Paul Scherrer Instituts diesen Zusammenhang zwischen innerem Aufbau und beobachtbaren Eigenschaften für unterschiedliche Stoffe aufklären. Mit dem daraus gewonnenen Wissen wollen sie Grundlagen für neue Anwendungen – sei es in der Medizin, der Informationstechnologie, der Energiegewinnung und -speicherung – oder für neue Produktionsverfahren der Industrie schaffen.
Mehr dazu unter Überblick Zukunftstechnologien
Sieben Nanometer für die Elektronik der Zukunft
Forschenden des Paul Scherrer Instituts ist es gelungen, in einem Halbleitermaterial regelmässige Muster zu erzeugen, die 16 Mal kleiner sind als diejenigen heutiger Computer-Chips. Damit haben sie einen wichtigen Schritt zu noch kleineren Computerbauteilen gemacht. Strukturen dieser Grösse sieht die Industrie als Standard für das Jahr 2028 vor.
Nanometer in 3-D
Forschende haben 3-D-Bilder winziger Objekte erzeugt und konnten dabei sogar 25 Nanometer grosse Details (1 Nanometer = 1 Millionstel eines Millimeters) sichtbar machen. Dabei haben sie nicht nur die Form der Untersuchungsgegenstände bestimmen können, sondern auch gezeigt, wie ein bestimmtes chemisches Element (Kobalt) darin verteilt ist und ob es in einer chemischen Verbindung oder in Reinform vorliegt.
Neuer Laser für Computerchips
Germanium-Zinn-Halbleiterlaser lässt sich direkt auf Siliziumchips aufbringenWinzige Laser, die in Computerchips aus Silizium eingebaut werden, sollen in Zukunft die Kommunikation innerhalb der Chips und zwischen verschiedenen Bauteilen eines Computers beschleunigen. Lange suchten Experten nach einem dafür geeigneten Lasermaterial, das sich mit dem Fertigungsprozess von Siliziumchips vereinbaren lässt. Wissenschaftler des Forschungszentrums Jülich und des Paul Scherrer Instituts PSI haben hier nun einen wichtigen Fortschritt erzielt.
Batman zeigt den Weg zu kompakter Datenspeicherung
Forschenden am Paul Scherrer Institut PSI ist es gelungen, winzige magnetische Strukturen mit Laserlicht umzuschalten und die Veränderung zeitlich zu verfolgen. Dabei blinkte kurz ein nanometergrosser Bereich auf, der skurrilerweise an das Fledermaus-Symbol von Batman erinnert. Die Forschungsergebnisse könnten die Datenspeicherung auf Festplatten kompakter, schneller und effizienter machen.
Erstaunliches Verhalten in Hochtemperatursupraleitern beobachtet
Neuer Effekt möglicherweise wichtig für grundsätzliches VerständnisEin international besetztes Forschungsteam hat in Experimenten am PSI ein neues unerwartetes Verhalten in kupferbasierten Hochtemperatursupraleitern beobachtet. Die Erklärung des neuen Phänomens à einer unerwarteten Form gemeinsamer Bewegung der elektrischen Ladungen à stellt für die Forschenden eine grosse Herausforderung dar. Sollte sie gelingen, könnte das einen wichtigen Schritt zum Verständnis der Hochtemperatursupraleitung an sich darstellen.
Nützlich für Spintronik: kostspieliger Spurwechsel auf der Elektronenautobahn
Der Bedarf an immer schnelleren und effizienteren Bauteilen für die Elektronik wächst rasant. Dafür braucht es neue Materialien mit neuen Eigenschaften. Hierbei spielen Oxide, insbesondere auf Basis von Strontiumtitanat (SrTiO3) eine wichtige Rolle. Nun wurde im Rahmen einer internationalen Forschungskooperation unter Leitung des PSI nachgewiesen, dass diese Materialien ein Verhalten zeigen, das für die Spintronik nützlich sein könnte.
Mit Licht neues Material erzeugt
Forschende des Paul Scherrer Instituts haben mithilfe kurzer Lichtblitze aus einem Laser die Eigenschaften eines Materials kurzzeitig so deutlich verändert, dass gewissermassen ein neues Material entstanden ist und die Veränderungen am Röntgenlaser LCLS in Kalifornien untersucht. Nach der Inbetriebnahme des PSI-Röntgenlasers SwissFEL werden solche Experimente auch am PSI möglich sein.
Geordneter Elektronenfluss im Isolator
Forschende des PSI, der EPFL und der Chinesischen Akademie der Wissenschaften haben gezeigt, dass das Material SmB6 alle Eigenschaften eines topologischen Isolators zeigt, also eines Materials, an dessen Oberfläche polarisierte Ströme fliessen können. Das Besondere an diesem Material ist, dass die Eigenschaft sehr robust ist à an der Materialoberfläche fliessen nur polarisierte Ströme und die Eigenschaft bleibt auch bei kleinen Unregelmässigkeiten in der Struktur oder Zusammensetzung des Materials erhalten. Polarisierte Ströme sind für die Spintronik à Elektronik, die den Elektronenspin nutzt à wichtig.
Sternmaterie aus dem Paul Scherrer Institut
Vorgänge in Sternen mit Isotopen aus dem PSI nachgestelltIn den Forschungsanlagen des Paul Scherrer Instituts entstehen Isotope, die sonst nur in explodierenden Sternen à den Supernovae à existieren. Damit lassen sich im Labor Vorgänge nachstellen, wie sie im Inneren der Sterne stattfinden. So hat ein internationales Forschungsteam das Titan-Isotop Ti-44 verwendet, um am CERN in Genf einen solchen Vorgang zu untersuchen. Dabei wurde deutlich, dass dieser weniger effektiv ist als bisher angenommen und man deswegen die bisherigen theoretischen Berechnungen von Abläufen in den Sternen wird korrigieren müssen.
Mit Röntgenlaser live beobachtet: Elektrizität steuert Magnetisierung
Forscher von ETH und PSI zeigen, wie sich in neuartigen Materialien die magnetische Struktur schnell ändern lässt. Der Effekt könnte in zukünftigen leistungsfähigen Festplatten Anwendung finden.
Supraleitung mit Magnetfeld eingeschaltet
Meist sieht man Supraleitung und Magnetfelder als Konkurrenten à sehr starke Magnetfelder zerstören in der Regel den supraleitenden Zustand. Physiker des Paul Scherrer Instituts PSI haben nun gezeigt, dass in dem Material CeCoIn5 ein neuartiger supraleitender Zustand erst bei starken externen Magnetfeldern entsteht und dann durch Veränderung des Feldes manipuliert werden kann. Das Material ist auch schon bei schwächeren Feldern supraleitend, bei starken Feldern entsteht aber ein zusätzlicher zweiter supraleitender Zustand, so dass gleichzeitig im selben Material zwei unterschiedliche supraleitende Zustände existieren.
Zukünftige Computerchips mit "elektronischem Blutkreislauf"
Im Rahmen des Sinergia-Programms fördert der Schweizerische Nationalfonds das dreijährige Forschungsvorhaben REPCOOL. Unter der Leitung von IBM Research à Zürich arbeiten in diesem Projekt Wissenschaftler der ETH Zürich, des Paul Scherrer Instituts in Villigen und der Università della Svizzera italiana in Lugano gemeinsam an der Erforschung eines elektronischen Blutkreislaufs für zukünftige 3D-Computerchips. Vom menschlichen Gehirn inspiriert, entwickeln die Forscher ein Mikrokanalsystem mit einer elektrochemischen Flussbatterie, die 3D-Chipstapel gleichzeitig kühlen und mit Energie versorgen. Ultimatives Ziel ist die Entwicklung eines Supercomputers in PC-Grösse.
Elektronen mit „gespaltener Persönlichkeit“
Im supraleitenden Material La1.77Sr0.23CuO4 verhält sich oberhalb der Übergangstemperatur ein Teil der Elektronen wie in einem konventionellen Metall, ein anderer Teile wie in einem unkonventionellen à je nach Bewegungsrichtung. Das zeigen Untersuchungen an der SLS. Die Entdeckung dieser Anisotropie liefert einen wesentlichen Beitrag zum Verständnis der Hochtemperatursupraleitung. Ausserdem wird man diesen Effekt in zukünftigen Experimenten und Theorien berücksichtigen müssen.
Auf dem Weg zu Natrium-Ionen-Batterien
Natriumdynamik auf mikroskopischem Niveau verstehenLithium-Ionen-Batterien sind sehr leistungsstark, doch die Nutzung von Lithium hat Nachteile: es ist teuer und seine Gewinnung belastet die Umwelt. Eine Möglichkeit, diese Nachteile zu umgehen, wäre statt Lithium Natrium zu verwenden. Um eine Natrium-Ionen-Batterie zu bauen, muss man verstehen, wie sich die Natrium-Ionen in den entsprechen Materialien bewegen. Forschende des Paul Scherrer Instituts haben nun erstmals die Pfade bestimmt, auf denen sich Natrium-Ionen in einem möglichen Batterie-Material bewegen. Mit diesem Wissen kann man überlegen, wie man durch geringe Änderungen der Struktur oder der Zusammensetzung neue Materialien erzeugen kann, die Eigenschaften haben, wie sie in zukünftigen Batterien gebraucht würden.
Neutronen und Synchrotronlicht helfen bronzezeitliche Arbeitstechniken zu entschlüsseln
Untersuchungen am PSI haben es möglich gemacht, zu bestimmen, wie ein einzigartiges bronzezeitliches Beil hergestellt worden ist. Zu verdanken ist das dem Verfahren der Neutronentomografie, mit der man ein genaues dreidimensionales Abbild des Inneren eines Gegenstandes erzeugen kann. Seit einem Jahrzehnt kooperiert das PSI erfolgreich mit verschiedenen Museen und archäologischen Institutionen im In- und Ausland. Es ist ein deutliches Zeichen der etablierten Kooperation, dass der 18. Internationale Kongress über Antike Bronzen, der vom 3. - 7. September 2013 an der Universität Zürich stattfindet, auch einen Tag am PSI tagt.
Magnetisierung im Pikosekundentakt gesteuert
Ein Terahertzlaser, der am Paul Scherrer Institut entwickelt worden ist, macht es möglich, die Magnetisierung eines Materials in Zeiträumen von Pikosekunden gezielt zu steuern. In ihrem Experiment leuchteten die Forscher mit extrem kurzen Lichtpulsen aus dem Laser auf ein magnetisiertes Material. Das magnetische Feld des Lichtpulses konnte die magnetischen Momente aus ihrer Ruhelage auslenken und zwar so, dass sie mit einer geringen Verzögerung exakt dem Verlauf des Magnetfeldes des Lasers folgten. Der in dem Experiment verwendete Terahertzlaser ist einer der stärksten seiner Art weltweit.
Ferromagnetisch und antiferromagnetisch – und das gleichzeitig
Forscher des Paul Scherrer Instituts PSI haben dünne, kristalline Schichten des Materials LuMnO3 hergestellt, die gleichzeitig ferromagnetisch und antiferromagnetisch sind. Die LuMnO3-Schicht ist in unmittelbarer Nähe der Grenzfläche zum Trägerkristall ferromagnetisch; mit zunehmendem Abstand nimmt sie die für das Material sonst übliche antiferromagnetische Ordnung an, während der Ferromagnetismus immer schwächer wird. Die Möglichkeit, zwei verschiedene magnetische Ordnungen innerhalb eines Materials zu erzeugen, könnte von grosser technischer Bedeutung sein.
Der reinste Ort des Paul Scherrer Instituts
In den Reinräumen des Paul Scherrer Instituts PSI laufen hochempfindliche Prozesse ab. Ein einziges Staubteilchen am falschen Ort könnte fatale Folgen haben. Ein Blick hinter die Kulissen in Räume, in denen der Sauberkeit wegen sogar Bleistifte verboten sind.
Experimente in Millionstelsekunden
Myonen à instabile Elementarteilchen à bieten Forschenden wichtige Einblicke in den Aufbau der Materie. Sie liefern Informationen über Vorgänge in modernen Materialien, über die Eigenschaften von Elementarteilchen und über die Grundstrukturen der physikalischen Welt. Viele Myonenexperimente sind nur am Paul Scherrer Institut möglich, weil hier besonders intensive Myonenstrahlen zur Verfügung stehen.
Winzige Magnete als Modellsystem
Wissenschaftler untersuchen an Nano-Stäbchen, wie sich Materie ordnetUm die magnetischen Wechselwirkungen zwischen Atomen sichtbar zu machen, haben Forschende am PSI ein Modellsystem entwickelt. Es ist so gross, dass es sich bequem unter einem Röntgenmikroskop beobachten lässt und imitiert doch die kleinsten Bewegungen in der Natur. Das Modell: Ringe aus jeweils sechs nanometergrossen magnetischen Stäbchen. Bei Raumtemperatur schwanken die Magnetisierungsrichtungen der einzelnen kleinen Stäbchen ständig und auf natürliche Weise. Die magnetischen Wechselwirkungen zwischen den Stäbchen konnten die Wissenschaftler deshalb in Echtzeit beobachten.
Germanium – zum Leuchten gezogen
Forscher des PSI und der ETH Zürich haben mit Kollegen vom Politecnico di Milano in der aktuellen Ausgabe der wissenschaftlichen Fachzeitschrift "Nature Photonics" eine Methode erarbeitet, einen Laser zu entwickeln, der schon bald in den neuesten Computern eingesetzt werden könnte. Damit könnte die Geschwindigkeit, mit der einzelne Prozessorkerne im Chip miteinander kommunizieren, drastisch erhöht werden. So würde die Leistung der Rechner weiter steigen.
Röntgen-Laser: Auf dem Weg zur Strukturbestimmung von Nanoteilchen
An Freie-Elektronen-Röntgen-Lasern wie dem zukünftigen SwissFEL des Paul Scherrer Instituts PSI sollen unter anderem die Strukturen von komplexen Nanoteilchen bis hin zu Biomolekülen untersucht werden. Dabei ist nicht nur die eigentliche Messung eine Herausforderung, sondern auch die Rekonstruktion der Struktur aus den Messdaten. Forscher des PSI haben nun einen optimierten mathematischen Weg aufgezeigt, wie man aus so gewonnen Messdaten eine deutlich bessere Auflösung bei der Bestimmung der Struktur eines einzelnen Teilchens erhält. Das Verfahren wurde an der Synchrotron Lichtquelle Schweiz des PSI erfolgreich getestet.
Motorenöl hinter Metall beobachten
Am liebsten würden sie durch das Metallgehäuse der Kupplung hindurchsehen, die Entwickler der Firma LuK (D). Sie möchten beobachten, wie sich das Öl verteilt, das die Kupplung schmiert und kühlt. Eine transparente Scheibe ist aber rasch verschmutzt und Röntgenstrahlen zeigen nur das Metall. Die Ingenieure wandten sich deshalb an die Wissenschaftler des Paul Scherrer Instituts, die mit Neutronen das Metall durchleuchteten und das Schmieröl sichtbar machten. Vom Resultat waren alle überrascht: Nur drei von acht Lamellen waren ausreichend geschmiert.
Supraleiter überraschen mit verblüffenden Eigenschaften
Wissenschaftler des Paul Scherrer Instituts haben zusammen mit chinesischen und deutschen Forscherkollegen neue Erkenntnisse zu einer Klasse von Hochtemperatur-Supraleitern gewonnen. Die experimentellen Ergebnisse aus der Grundlagenforschung deuten darauf hin, dass magnetische Wechselwirkungen für das Phänomen der Hochtemperatur-Supraleitung von zentraler Bedeutung sind. Dieses Wissen könnte in Zukunft dazu beitragen, Supraleiter mit besseren technischen Eigenschaften zu entwickeln.
Fluktuationen mit Röntgenmikroskop sichtbar gemacht
Mit Röntgenstrahlen kann die Nanostruktur von so unterschiedlichen Objekten untersucht werden, wie einzelne Zellen oder magnetische Datenträger. Hochauflösende Bilder sind jedoch nur möglich, wenn sowohl Mikroskop als auch das Untersuchungsobjekt extrem stabil sind. Forscher der TU München des PSI zeigten nun, wie man diese Bedingungen lockern kann, ohne die Bildqualität zu beeinträchtigen. Auch hochdynamische Systeme, wie z.B. magnetische Fluktuationen, die die Lebensdauer von Daten auf Festplatten einschränken, können mit der neuen Methodik untersucht werden.
Magnetisches Nanoschachbrett baut sich von selbst zusammen
Forscher des Paul Scherrer Instituts und des Indian Institute of Science Education and Research haben in einer Anordnung magnetischer Moleküle gezielt den Magnetismus in jedem zweiten Molekül abschalten können, so dass ein magnetisches Schachbrettmuster entstand. Darin konnten die Forscher gezielt den Quantenzustand eines Teils der Moleküle manipulieren. Die Möglichkeit, die Zustände einzelner Quantenobjekte gezielt zu verändern, ist eine wichtige Voraussetzung für die Entwicklung von Quantencomputern.
Bereit zur Mondlandungsstimmung
Interview mit Thomas HuthwelkerDas Paul Scherrer Institut stellt Forschenden aus aller Welt seine Forschungsanlagen für ihre wissenschaftliche Arbeit zur Verfügung. Damit diese optimale Bedingungen antreffen treiben die PSI-Mitarbeitenden im Hintergrund beträchtlichen Aufwand. Ein Interview mit einem Forscher erlaubt einen Blick hinter die Kulissen. Das Interview stammt aus der neuesten Ausgabe des PSI-Magazins Fenster zur Forschung.
Silizium – fast zum Zerreissen verspannt
Zieht man ein Stück Silizium auseinander, erzeugt man in dessen Inneren eine mechanische Spannung, die die elektronischen Eigenschaften des Materials deutlich verbessern kann. Forscher des Paul Scherrer Instituts und der ETH Zürich haben mit einem neuen Verfahren in einer Siliziumschicht extrem verspannte Nanodrähte erzeugt. Für ein Material, das als Grundlage für Elektronikbauteile dienen kann, wurde dabei die bislang höchste mechanische Spannung gemessen. Ziel ist es, auf Basis solcher Drähte leistungsfähige Transistoren für Mikroprozessoren herzustellen.
Eingebaute Germanium-Laser könnten Computer-Chips schneller machen
Forscher des Paul Scherrer Instituts haben untersucht, wie man das Halbleitermaterial Germanium dazu bringen könnte, Laserlicht auszusenden. Als Lasermaterial könnte Germanium mit Silizium die Grundlage für neuartige Computerchips bilden, in denen Informationen zum Teil in Form von Licht übertragen würden. Diese Technologie würde es ermöglichen, den Datenfluss auf Chips zu revolutionieren und so die Leistung der Elektronik weiter voranzutreiben.
Neue Einblicke in Supraleitermaterialien
Eine neue Röntgenmethode erlaubt Einblicke in die magnetischen Eigenschaften einzelner Atomlagen eines Materials, das die Grundlage einiger Hochtemperatursupraleiter bildet. Dabei zeigte sich, dass sich die atomar dünnen Materialschichten in den magnetischen Eigenschaften erstaunlich wenig von makroskopisch dicken Materialproben unterscheiden. In Zukunft könnte man so Vorgänge in sehr dünnen Supraleitermaterialien erforschen und zum Verständnis des Phänomens der Hochtemperatursupraleitung beitragen.