Abkehr von der Kernenergie, Ausbau von Solar- und Windkraft, Energiegewinnung aus Biomasse, Senkung des Energieverbrauchs. Bis 2050 soll die Schweiz klimaneutral werden. Ein ehrgeiziges Ziel, welches durch die zunehmend herausfordernde geopolitische Lage dringlicher denn je geworden ist. Wie lässt sich in den nächsten Jahren eine nachhaltige und widerstandsfähige Energieversorgung für die Schweiz aufbauen? Wie können erneuerbare Energien optimal genutzt werden? Welche neuen Technologien sind besonders vielversprechend? Am PSI suchen Forschende nach Antworten auf diese entscheidenden Fragen.
Auf dem Weg zu Natrium-Ionen-Batterien
Natriumdynamik auf mikroskopischem Niveau verstehenLithium-Ionen-Batterien sind sehr leistungsstark, doch die Nutzung von Lithium hat Nachteile: es ist teuer und seine Gewinnung belastet die Umwelt. Eine Möglichkeit, diese Nachteile zu umgehen, wäre statt Lithium Natrium zu verwenden. Um eine Natrium-Ionen-Batterie zu bauen, muss man verstehen, wie sich die Natrium-Ionen in den entsprechen Materialien bewegen. Forschende des Paul Scherrer Instituts haben nun erstmals die Pfade bestimmt, auf denen sich Natrium-Ionen in einem möglichen Batterie-Material bewegen. Mit diesem Wissen kann man überlegen, wie man durch geringe Änderungen der Struktur oder der Zusammensetzung neue Materialien erzeugen kann, die Eigenschaften haben, wie sie in zukünftigen Batterien gebraucht würden.
Computersimulationen: wichtige Stütze für die KKW-Sicherheit
Ohne Computersimulationen wäre der Betrieb von Kernkraftwerken kaum möglich. Ob es um den Einbau neuer Komponenten oder um Tests und Versuche zur Wahrung der Sicherheit geht, fast alles muss vorher am Computer im Voraus berechnet und analysiert werden. Im Labor für Reaktorphysik und Systemverhalten des Paul Scherrer Instituts PSI werden dafür Rechenmodelle und Computerprogramme entwickelt. Die PSI-Forscher fungieren damit als unabhängige Forschungspartner der Aufsichtsbehörde, des Eidgenössischen Nuklearsicherheitsinspektorats ENSI, und leisten so einen wichtigen Beitrag zur Gewährleistung der Sicherheit von schweizerischen Kernkraftwerken.
Eine runde Sache für weniger nuklearen Abfall
Bereits in den 1960er Jahren entstand die Idee, die Brennstoffe für Kernkraftwerke in Form von dicht gepackten Kugeln statt der heutigen üblichen Pellets herzustellen. Man versprach sich davon eine Vereinfachung der Brennstoffherstellung sowie eine deutliche Verminderung der radioaktiven Abfallmenge sowohl bei der Herstellung des Brennstoffs selbst als auch nach dessen Nutzung in einem Kernkraftwerk. Der kugelförmige Brennstoff kam jedoch nie zum Einsatz, weil sich die schnellen Reaktoren, für die er vorgesehen war, nicht durchsetzen konnten. Auch das Paul Scherrer Institut PSI trug in der Vergangenheit zur Erforschung des kugelförmigen Kernbrennstoffes bei. Zurzeit laufen am PSI wieder mehrere, zum Teil EU-finanzierte Projekte, um die Herstellung der Brennstoffkügelchen weiter zu verfeinern. Zum Einsatz kommen könnte diese Art von Brennstoff entweder in speziellen Anlagen zur Reduktion von radioaktivem Abfall (sogenannten ADS-Anlagen) oder in schnellen Reaktoren der vierten Generation, die in einem geschlossenen Zyklus ebenfalls weniger langlebigen Abfall produzieren.
Neutronen und Synchrotronlicht helfen bronzezeitliche Arbeitstechniken zu entschlüsseln
Untersuchungen am PSI haben es möglich gemacht, zu bestimmen, wie ein einzigartiges bronzezeitliches Beil hergestellt worden ist. Zu verdanken ist das dem Verfahren der Neutronentomografie, mit der man ein genaues dreidimensionales Abbild des Inneren eines Gegenstandes erzeugen kann. Seit einem Jahrzehnt kooperiert das PSI erfolgreich mit verschiedenen Museen und archäologischen Institutionen im In- und Ausland. Es ist ein deutliches Zeichen der etablierten Kooperation, dass der 18. Internationale Kongress über Antike Bronzen, der vom 3. - 7. September 2013 an der Universität Zürich stattfindet, auch einen Tag am PSI tagt.
Rekonstruktion des Nuklearunfalls von Fukushima
Forscher des Paul Scherrer Instituts PSI beteiligen sich zurzeit an einem internationalen Projekt mit dem Ziel, die Vorgänge zu rekonstruieren, die sich beim Nuklearunfall vom März 2011 im Inneren der Reaktoren des japanischen Kernkraftwerks Fukushima Daiichi ereigneten. Insbesondere die Rekonstruktion des Endzustandes der Reaktorkerne soll dem Betreiber des havarierten Werkes, der Tokyo Electricity Company TEPCO dabei helfen, die Dekontaminierungsarbeiten in der Reaktorschutzhülle vorzubereiten. Zudem soll die Übung auch zur weiteren Verfeinerung der Computerprogramme beitragen, mit deren Hilfe Nuklearunfälle simuliert werden.
Kanton und Paul Scherrer Institut stellen PARK innovAARE vor
Hightech-Zone in Villigen als idealer Netzwerkstandort für schweizerischen InnovationsparkDer Kanton Aargau und das Paul Scherrer Institut (PSI) stellen das Konzept PARK innovAARE für einen Netzwerkstandort des schweizerischen Innovationsparks vor. Die unmittelbare Nähe zum PSI mit seinen Grossforschungsanlagen macht das untere Aaretal zu einem idealen Standort, wo Spitzenforschung und unternehmerische Innovationstätigkeit sich beflügeln.
Die SwissFEL-Anlage: die Undulatorstrecke – hier entsteht das Licht
Das Röntgenlicht des SwissFEL entsteht, wenn die im Linearbeschleuniger beschleunigten Elektronen auf eine Wellenbahn gezwungen werden. Das geschieht in den Undulatoren - Magnetanordnungen, die die Elektronen ablenken. Die gesamte Undulatorstrecke wird 60 Meter lang sein.
Magnetisierung im Pikosekundentakt gesteuert
Ein Terahertzlaser, der am Paul Scherrer Institut entwickelt worden ist, macht es möglich, die Magnetisierung eines Materials in Zeiträumen von Pikosekunden gezielt zu steuern. In ihrem Experiment leuchteten die Forscher mit extrem kurzen Lichtpulsen aus dem Laser auf ein magnetisiertes Material. Das magnetische Feld des Lichtpulses konnte die magnetischen Momente aus ihrer Ruhelage auslenken und zwar so, dass sie mit einer geringen Verzögerung exakt dem Verlauf des Magnetfeldes des Lasers folgten. Der in dem Experiment verwendete Terahertzlaser ist einer der stärksten seiner Art weltweit.
Fünfmal weniger Platin: Brennstoffzellen könnten dank neuem Aerogel-Katalysator wirtschaftlich attraktiver werden
Wasserstoff-Brennstoffzellen haben das Potenzial, die individuelle Mobilität in eine umweltfreundliche Zukunft zu führen. Das Paul Scherrer Institut PSI erforscht und entwickelt seit mehr als 10 Jahren solche Brennstoffzellen. Erste Praxistests haben deren erfolgreichen Einsatz in Autos und Bussen demonstriert. Weitere Forschung bleibt jedoch nötig, um ihre Langlebigkeit und Wirtschaftlichkeit zu verbessern. Ein internationales Forscherteam mit PSI-Beteiligung hat nun ein neues Nanomaterial hergestellt und charakterisiert, das Leistungsfähigkeit und Haltbarkeit dieser Brennstoffzellen um ein Vielfaches erhöhen könnte - bei gleichzeitiger Senkung der Materialkosten.
Die SwissFEL-Anlage: Der Linearbeschleuniger
Im Linearbeschleuniger bekommt der Elektronenstrahl die Bewegungsenergie, die nötig ist, damit er das Röntgenlicht erzeugen kann. Der Linearbeschleuniger ist insgesamt mehr als 300 Meter lang à sein Herz besteht aus 11752 speziell geformten Kupferscheiben, in denen das beschleunigende Feld erzeugt wird.
Bauchspeicheldrüse: Neues Verfahren erkennt Tumore besser
Besser als CT und MRT: Forschende des Inselspitals Bern, des Universitätsspitals Basel und des Paul Scherrer Instituts haben eine neue Methode zur Erkennung kleiner Tumore in der Bauchspeicheldrüse entwickelt.
Die SwissFEL-Anlage: die Elektronenquelle
In der Elektronenquelle entsteht der Elektronenstrahl für den SwissFEL. Die Anforderungen an die Anlage sind hoch: Damit der SwissFEL erfolgreich betrieben werden kann, muss der Elektronenstrahl vom ersten Augenblick an von bester Qualität sein.
Wie Radionuklide durchs Gestein irren: Erkenntnisse für ein Tiefenlager
Wie bewegen sich radioaktive Substanzen durch das Wirtsgestein in einem Tiefenlager für nukleare Abfälle? Dieser Frage gehen Forscher der Gruppe für Diffusionsprozesse im Labor für Endlagersicherheit am Paul Scherrer Institut PSI nach. Recht gut bekannt sind die Transporteigenschaften von negativ geladenen Radionukliden, die von den ebenfalls negativ geladenen Oberflächen von Tonmineralien abgestossen werden und somit kaum am Gestein haften. Für positiv geladene und daher stark haftende Radionuklide werden derzeit die entsprechenden Erkenntnisse im Rahmen eines EU-Projekts erarbeitet, an dem sich auch das PSI beteiligt.
Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films
Interfaces of transition metal oxides are a fertile ground for new physics, often showing novel electronic and magnetic properties that do not exist in the bulk form of the material. A relatively little-explored direction in this field concerns the interfacial properties of multifunctional materials such as the magnetoelectric multiferroics.
Erste SwissFEL-Beschleunigerstruktur fertiggestellt
Am PSI wurde die erste Beschleunigerstruktur für den Linearbeschleuniger des SwissFEL fertiggestellt. Insgesamt 104 dieser Strukturen werden benötigt, um im SwissFEL die Elektronen, die die Röntgenlichtpulse abstrahlen werden, auf die erforderliche Energie zu beschleunigen. Das hochpräzise gefertigte Bauteil befindet sich nun im Hochleistungstest.
Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films
Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.
Ferromagnetisch und antiferromagnetisch – und das gleichzeitig
Forscher des Paul Scherrer Instituts PSI haben dünne, kristalline Schichten des Materials LuMnO3 hergestellt, die gleichzeitig ferromagnetisch und antiferromagnetisch sind. Die LuMnO3-Schicht ist in unmittelbarer Nähe der Grenzfläche zum Trägerkristall ferromagnetisch; mit zunehmendem Abstand nimmt sie die für das Material sonst übliche antiferromagnetische Ordnung an, während der Ferromagnetismus immer schwächer wird. Die Möglichkeit, zwei verschiedene magnetische Ordnungen innerhalb eines Materials zu erzeugen, könnte von grosser technischer Bedeutung sein.
Wissen für morgen aus den „heissen Zellen“
Die Manipulation und Untersuchung von bestrahlten und daher radioaktiven Materialien, sei es aus Kernkraftwerken oder aus Forschungsanlagen, erfordert strenge Sicherheitsvorkehrungen. Untersuchungen dürfen nur in sogenannten heissen Zellen durchgeführt werden, hinter deren bis zu einem Meter dicken Beton- und Bleiwänden die Radioaktivität hermetisch eingeschlossen und abgeschirmt wird. In den heissen Zellen des Hotlabors am PSI werden regelmässig die abgebrannten Brennstäbe aus den Schweizer Kernkraftwerken materialwissenschaftlich untersucht. Die gewonnenen Erkenntnisse helfen den KKW-Betreibern, die Effizienz und Sicherheit ihrer Kraftwerke zu optimieren. Neben dieser Dienstleistung für die Kernkraftwerke beteiligt sich das Hotlabor an internationalen Forschungsprojekten.
Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures
Encoding information by the application of an electric field has a key role in the development of novel memory devices that can operate at high speed while keeping low energy consumption. In magnetoelectric multiferroics, magnetic and ferroelectric ordering coexist and are coupled together so that it is possible to manipulate the material's magnetic structure by applying an electric field with a negligible current flow.
Weltmeister aus dem PSI
Silvan Melchior, Elektronik-Lernender vom PSI, hat bei der Weltmeisterschaft der Berufslernenden in Leipzig die Goldmedaille in seinem Fachgebiet gewonnen. Insgesamt sind in dem Fach 16 Lernende aus 16 Ländern angetreten. Insgesamt hat das Schweizer Team mit neun Gold-, drei Silber-, fünf Bronzemedaillen sowie 18 Diplomen den zweiten Gesamtplatz hinter Korea belegt.
Grundsteinlegung für die neue Grossforschungsanlage SwissFEL
Mit der feierlichen Grundsteinlegung legte das PSI am 3. Juli 2013 nicht nur den Grundstein für die neue Grossforschungsanlage SwissFEL, sondern auch für die Fortführung von 25 Jahren erfolgreicher Forschung am PSI.
1D to 2D Na+ Ion Diffusion Inherently Linked to Structural Transitions in Na0.7CoO2
We report the observation of a stepwise "melting" of the low-temperature Na-vacancy order in the layered transition-metal oxide Na0.7CoO2. High-resolution neutron powder diffraction analysis indicates the existence of two first-order structural transitions, one at T1 ≈ 290 K followed by a second at T2 ≈ 400 K. Detailed analysis strongly suggests that both transitions are linked to changes in the Na mobility.
Der reinste Ort des Paul Scherrer Instituts
In den Reinräumen des Paul Scherrer Instituts PSI laufen hochempfindliche Prozesse ab. Ein einziges Staubteilchen am falschen Ort könnte fatale Folgen haben. Ein Blick hinter die Kulissen in Räume, in denen der Sauberkeit wegen sogar Bleistifte verboten sind.
Kein Tröpfchen zuviel
In vielen technischen Prozessen spielt die Bereitstellung eines mit Dampf gesättigten Gasgemisches eine entscheidende Rolle. So werden zum Beispiel durch eine hohe Dampfsättigung der Gasmischung bei der Dieselverbrennung die Emissionen von Stickoxiden reduziert. Ein Forscher des Paul Scherrer Instituts sorgt mit einer neuen Erfindung dafür, dass dies in Zukunft durch eine einfache, flexible und robuste Technik industriell umgesetzt werden kann.
Suche nach dem Higgs-Teilchen: PSI inside
Es gibt eine lange Checkliste mit Eigenschaften, die das Higgs-Teilchen laut Theorie haben muss. Jede einzelne muss man in Zukunft aufwändig im Experiment überprüfen. Wie die Suche auch ausgeht à ob man das originale Higgs-Teilchen entdeckt hat, oder ob es ein «Higgs-ähnliches» Teilchen war, wie es von einigen Theorien beschrieben wird à über die Ergebnisse wird man auf jeden Fall gross «PSI inside» schreiben können.
Dosing Differential Electrochemical Mass Spectrometry (D-DEMS) for Li-O2 Batteries
The high-energy rechargeable Li-O2 battery has been subject to intensive research worldwide during the past years. The Li-O2 cell mainly comprises a negative (e.g. Li metal) and positive (e.g. porous carbon) electrode separated by an electronically insulating, but Li+ conducting electrolyte layer. In order to study the cell chemistry, a differential electrochemical mass spectrometry setup based on a set of valves, a pressure sensor and a quadrupole mass spectrometer has been developed.
RF Pulse compressor for the SwissFEL
The SwissFEL C-band (5.712 GHz) linac consists of 26 RF modules. Each module is composed of a single 50 MW klystron feeding a pulse compressor and four two meter long accelerating structures. The pulse compressor is a passive device that compresses in time the 3 μs pulse from klystron into a 330 ns pulse. The compressed power is then guided to the four accelerating structures. The pulse compressor is based on a single Barrel Open Cavity (BOC). The BOC makes use of a “whispering gallery” mode which has an intrinsically high quality factor and operates in resonant rotating wave regime (Figure 1); moreover, and contrary to the conventional SLED scheme, a single cavity is sufficient to define the pulse compressor, without the need for two cavities. A prototype has been manufactured by the Dutch company VDL (Figure 2) and successfully power tested in PSI reaching a peak power of 300 MW.
Schnelle Neutronen für mehr Sicherheit
Neutronen sind ein hervorragendes Mittel zur zerstörungsfreien Abbildung des Innern von Gegenständen. Sie bieten sich als Ergänzung zur vorherrschenden Röntgenradiografie an. Bei bestimmten Materialien, die unter Röntgenstrahlung praktisch undurchsichtig sind oder kaum unterscheidbar sind, stellen Neutronen das einzige aussagekräftige Sezierwerkzeug dar. Untersuchungen mittels Neutronenradiographie finden in der Regel in spezialisierten Laboren oder auf ortsfesten Anlagen statt, da die Erzeugung der Neutronen auf komplexe, teure und nicht transportierbare Maschinen angewiesen ist. Forscher des Paul Scherrer Instituts PSI wollen nun mit einer Bildgebungstechnik auf der Basis von schnellen Neutronen eine flexible Alternative anbieten.
ecoinvent – weltweit führende Datenbank für Ökobilanzen lanciert Version 3.0
Die Ökoinventar-Datenbank ecoinvent bildet die Basis für Ökobilanzierungsprojekte, Öko-Design oder Produkt-Umweltinformationen. Unternehmen, Politiker und Konsume nten haben seit 2003 dank ecoinvent die Möglichkeit, ihre Produkte mehr im Einklang mit der Umwelt herzustellen, neue Politiken umzusetzen oder ihr Konsumverhalten ökologischer zu gestalten. Die neue Version 3.0 ist ein weiterer Meilenstein in der Ökobilanzierung: Neue und aktualisierte Daten, zum Beispiel in den Bereichen chemische Produktion, Lebensmittel und Gemüse sowie Elektrizität, bieten den Nutzern von ecoinvent mehr Anwendungsmöglichkeiten.
MEGAPIE samples delivered to partners for post irradiation investigation
The MEGAWatt Pilot Experiment was operated for neutron generation with the PSI high intensity proton beam in 2006. The experiment utilized liquid target material, a lead bismuth eutectic. This marked a major milestone towards Accelerator Driven Systems (ADS), which are intended to be used for the incineration of nuclear waste.